Electronic Supplementary Information

Intracellular imaging of HeLa cells by non-functionalized NaYF₄:Er³⁺, Yb³⁺ upconverting nanoparticles

F. Vetrone, R. Naccache and J. A. Capobianco

Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, QC H4B 1R6, Canada

A. Juarranz, F. Sanz-Rodríguez and A. Blazquez-Castro

Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain

E. Martin Rodriguez, D. Jaque and J. García Solé

GIEL, Departamento de Física de Materiales, C-IV, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain

Contents:

- 1. Description of the upconversion process in lanthanide-doped nanoparticles
- 2. Schematic representation of the upconversion process
- 3. TEM image of the $NaYF_4$: Er^{3+} , Yb^{3+} nanoparticles

Supplementary Material (ESI) for Nanoscale This journal is (c) The Royal Society of Chemistry 2009

1. Description of the Upconversion Process

The luminescent trivalent lanthanide (Ln^{3+}) ions, in particular erbium (Er^{3+}) and thulium (Tm^{3+}) , have the ability to convert low energy excitation light (typically NIR) into higher energies, such as visible or UV, via a multiphoton process known as upconversion [1]. In contrast to typical two-photon absorption (TPA) materials, which are excited via virtual states, the Ln^{3+} ions have "real" electronic excited states (see Figure S1) thus cumbersome and expensive ultrafast lasers are not required and the process can be observed with small hand-held NIR laser diodes. Upconversion may occur via three known mechanisms namely excited state absorption (ESA), energy transfer upconversion (ETU) and photon avalanche (PA) [2]. The energy transfer upconversion mechanism is usually the most prominent in Ln^{3+} -doped nanoparticles where either Er^{3+} or Tm^{3+} is co-doped with the ytterbium ion (Yb³⁺). The Yb³⁺ ion is added as a sensitizer since its only excited state is resonant with the NIR pump wavelength and has the highest absorption coefficient (at 980 nm) among the other Ln^{3+} ions. Therefore, it acts as an efficient sensitizer to transfer the absorbed energy to neighboring Er^{3+} or Tm^{3+} ions in close proximity.

Figure S1 shows the typical upconversion processes in Er^{3+}/Yb^{3+} co-doped nanoparticles, which occurs via successive energy transfers from excited Yb³⁺ ions to neighboring Er^{3+} ions. The first step in the upconversion process is the absorption of an NIR photon from a Yb³⁺ ion exciting it from the ${}^{2}F_{7/2}$ ground state to the ${}^{2}F_{5/2}$ excited state. This is followed by an energy transfer from the excited Yb³⁺ ion to a neighboring Er^{3+} in close proximity exciting it from the ${}^{4}I_{15/2}$ ground state to the intermediate ${}^{4}I_{11/2}$ state (denoted as 1 in Figure S1). A second energy transfer from another Yb³⁺ ion then promotes the Er^{3+} ion to the higher ${}^{4}F_{7/2}$ excited state (denoted as 2). The ${}^{4}F_{7/2}$ excited state then non-radiatively decays to the lower lying green ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ and red ${}^{4}F_{9/2}$ excited states resulting in the observed green and red emissions. Alternatively, the ${}^{4}F_{9/2}$ excited state can be directly populated from the ${}^{4}I_{13/2}$ excited state and following energy transfer from an excited Yb³⁺ will directly populate the ${}^{4}F_{9/2}$ excited state (denoted as 3).

^{1.} R. Scheps, Prog. Quantum Electron., 1996, 20, 271-358.

^{2.} F. Auzel, Chem. Rev., 2004, 104, 139-173.

Figure S1: Schematic representation of the possible energy transfer processes involved in the upconversion of $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ co-doped nanoparticles.

Figure S2: TEM image of the polyethyleneimine (PEI)-capped NaYF₄:Er³⁺, Yb³⁺ nanoparticles.