Electronic supplementary information for

Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions

Takuya Nakashima,^a Jian Zhu,^a Ming Qin,^a Szushen Ho,^a and Nicholas A. Kotov*^{abc}

^a Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109,

USA.E-mail: kotov@umich.edu

^b Department of Biomedical Engineering, University of Michigan

^c Department of Materials Science and Engineering, University of Michigan

Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2010

1. Formation of aggregates of polyelectrolytes in [EMIm][EtSO₄]

The homogeneous clear solutions of PEI and PSS in $[EMIm][EtSO_4]$ were mixed together to give an opaque solution, indicating the formation of polyelectrolyte complexes of

PEI and PSS.

Figure S1. Photographs of (a) PSS, (b) PEI and (c) PEI/PSS mixture solutions of [EMIm][EtSO₄].

Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2010

2. IR measurement for PEI/PSS LBL

Figure S2. IR spectra of PEI, PSS casted on CaF_2 , $(PEI/PSS)_{20}$ LBL films prepared from water and $[EMIm][EtSO_4]$ on CaF_2 and $[EMIm][EtSO_4]$.

Both (PEI/PSS)₂₀ LBL films prepared from aqueous solutions and from IL solutions exhibited quite similar profiles. The absence of peaks typical for [EMIm][EtSO₄] such as ring-stretchings and C-H stretchings (C2-H, C4-H, C5-H, imidazolium ring) as denoted by dashed lines in Figure S2 indicates that the (PEI/PSS)₂₀ film prepared from IL solutions is free from [EMIm][EtSO₄] contamination.

3. Static water-contact angle measurements

Figure S3. Photographs of water-droplet on the $(PEI/PSS)_{10}$ multilayer films prepared from

(a) aqueous solutions and (b) $[EMIm][EtSO_4]$ solutions.

The static contact angle of water droplet on the $(PEI/PSS)_{10}$ film prepared from IL solutions was measured to be $32 \pm 3^{\circ}$ (Figure S3b), which was clearly larger than that of LBL film prepared from aqueous solutions $(12 \pm 3^{\circ})$ (Figure S3a).

4. XPS measurement for [PVA/(SWNT-PSS)]₁₀ LBL film

Figure S4. XPS survey spectra of a CaF_2 substrate and a $[PVA/(SWNT-PSS)]_{10}$ LBL film on CaF_2 .

A bare CaF_2 substrate was used as a reference. Besides substrate-related signals (F KLL, F 1s, Ca 2s, Ca 1s; see Figure S4, top), C1s and O 1s signals were observed (Figure S4, top), which originate from contamination of sample under normal ambient condition. In addition to those peaks, an S 2p signal was observed at 169 eV derived from PSS wrapping SWNTs for [PVA/(SWNT-PSS)]₁₀ sample (Figure S4, bottom). Both spectra for CaF₂ and LBL film showed similar background at around 400 eV, where N 1s peak should appear, indicating the [PVA/(SWNT-PSS)]₁₀ sample is also free from IL-contamination.