SUPPORTING INFORMATION

2D analogues of the inverted hexagonal phase self-assembled from 4,6dialkoxylated isophthalic acids at solid-liquid interfaces

Andrey S. Klymchenko^{a,b,*}, Shuhei Furukawa^{a,§}, Tanya Balandina^a, Klaus Müllen^c, Mark Van der Auweraer^a, Steven De Feyter^{a,*}

1. Self-assembly on Au(111) under potential control

<u>Video S1</u>. Ordering of ISA-D10 at Au(111)-water (0.1 M HClO₄) interface as a function of time. A sequence of 18 frames, recorded approx. every 1 min, are presented. While the ordering of cyclic structures remains intact, the bright spots in the middle of these cycles show dynamics. Substrate potential, $E_w = 350$ mV vs SCE; tunneling current, $I_t = 1$ nA; bias voltage, $U_{bias} = -300$ mV.

<u>Video S2.</u> Ordering of ISA-D7 at Au(111)-water (0.1 M HClO₄) interface as a function of time. A sequence of 15 frames, recorded approx. every 1 min, are presented. Similarly to ISA-D10, the ordering of cyclic structures remains intact, while the bright spots in the middle of these cycles show dynamics. $E_w = 350 \text{ mV}$ vs SCE; $I_t = 1 \text{ nA}$; bias voltage, $U_{\text{bias}} = -300 \text{ mV}$.

2. Self-assembly at the Au(111)-tetradecane interface

STM images were obtained by using a PicoSPM with a tip mechanically cut from a Pt/Ir wire (80/20, diameter 0.25 mm).

2.1 Self-assembly of ISA-D7 on Au(111).

Similar to the results obtained with EC-STM at the Au(111)-water (0.1 M HClO₄) interface, ISA-D7 at the Au(111)-tetradecane interface shows both pentameric cyclic and zig-zag type patterns (Figure S1). The pentameric cyclic structure is the dominant one.

Figure S1. Representative STM images of ISA-D7 at the Au(111)-tetradecane interface: coexistence of two patterns. a) I = 100 pA, V = -340 mV; b) I = 100 pA, V = -340 mV.

2.2 Self-assembly of ISA-D10 on gold (111).

Similar to ISA-D10 measured with EC-STM at the Au (111)-water (0.1 M HClO₄) interface, predominantly pentameric cyclic structures are formed and the degree of long-range ordering is limited. "Defect" clusters of more than five ISA-D10 molecules are common. A typical STM image of ISA-D10 at the Au(111)-tetradecane interface is shown in Figure S2.

Figure S2. STM image of ISA-D10 at Au(111)-tetradecane interface: I = 271 pA, V = -248 mV.

2.3 Self-assembly of ISA-D15 on Au(111).

Very similar to the experiments obtained with EC-STM at the Au (111)-water (0.1 M HClO₄) interface, ISA-D15 forms more disordered patterns compared to ISA-D7 and ISA-D10 at the Au(111)-tetradecane interface as well. ISA-D15 shows a tendency to form tetramers, hexamers, and even octamers, involving the interdigitation of alkyl chains (Figure S3).

Figure S3. STM images of ISA-D15 at Au(111)-tetradecane interface. a) I = 225 pA, V = -128 mV; b) I = 237 pA, V = -245m V.

3. Self-assembly at the HOPG-tetradecane interface

3.1. Self-assembly of ISA-D10 on HOPG.

ISA-D10 at the HOPG-tetradecane interface forms a regular network of pentameric cyclic structures (Figure S4). The degree of order is higher than for ISA-D10 on Au(111).

Figure S4. STM images obtained at HOPG/tetradecane interface for the monolayer of ISA-D10. a) I = 214 pA, V = -800 mV, b) I = 111 pA, V = -883 mV. Unit cells are indicated: $a = 6.4\pm0.1$ nm, $b = 6.8\pm0.1$ nm, $\alpha = 89\pm1^{\circ}$.

3.2. Self-assembly of ISA-D15 on HOPG.

At the HOPG-tetradecane interface ISA-D15 forms two types of domains both coexisting on the surface (Figure S5). One type of pattern consists of cyclic pentamers (unit cell values are $a = 6.8\pm0.4$ nm, $b = 8.3\pm0.1$ nm, $\alpha = 90\pm0.5^{\circ}$), a motif which is quite typical for this class of molecules. The second type resembles a linear network ($a = 2.4\pm0.1$ nm, $b = 3.3\pm0.1$ nm, $\alpha = 90\pm1^{\circ}$). For the latter network, only 3 out of 4 alkyl chains are adsorbed.

Figure S5. STM images of ISA-D15 at the HOPG-tetradecane interface, I = 135 pA, V = -800 mV. Two types of networks are observed: a) pentameric cyclic, where pentamers are well-ordered into parallel rows; b) high resolution image of the linear type pattern.

4. Cyclic voltammetry on Au(111) substrate in HClO₄

Figure S6. Cyclic voltammograms of bare Au(111) electrode in 0.1 M HClO₄ (solid line) and in the presence of ISA-D10 (dotted line) obtained using the EC-STM setup. Platinum wire was used as a reference electrode. The potential scan rate was 10 mV/s.