#### **Supplementary Materials**

### Absolute Quantum Yield Measurements of Colloidal NaYF<sub>4</sub> Upconverting Nanoparticles

John-Christopher Boyer and Frank C. J. M. van Veggel

University of Victoria, Department of Chemistry, P. O. Box 3065, Victoria, British Columbia, Canada, V8W 3V6.

#### **Synthetic Procedures**

All chemicals utilized in the synthesis of the upconverting nanoparticles and bulk sample were purchased from Aldrich and used as received.

#### Synthesis of Bulk NaYF<sub>4</sub> material

The lanthanide trifluoracetate precursors were prepared from the corresponding lanthanide and yttrium oxides and trifluoroacetic acid (99%). In the case of the NaYF<sub>4</sub>:  $Er^{3+}2$  mol%, Yb<sup>3+</sup>20 mol% codoped sample, 9.6 mg (0.025 mmol) of  $Er_2O_3$ , 98.5 mg (0.25 mmol) of Yb<sub>2</sub>O<sub>3</sub>, and 220.2 mg (0.975 mmol) of Y<sub>2</sub>O<sub>3</sub>were dissolved in 10 mL of 50% aqueous trifluoroacetic acid at 80 °C. The residual water and acid were then slowly evaporated at 80 °C. Subsequently, 0.3400 g (2.5 mmol) of sodium trifluoroacetate (98%) was added to the lanthanide trifluoroacetates and the powders were ground with a mortar and pestle. The resulting powder was heated to 110 °C in an oven and maintained at this temperature overnight to remove any residual moisture. The powder was then placed in a crucible and heated to a temperature of 400 i°C at a rate of 10 °C/min under air in a tube furnace and kept at this temperature for 4 hr. The furnace was then left to cool to RT. The resulting solid was then ground with a mortar and pestle to obtain a fine powder.

### Synthesis of 10 nm NaYF<sub>4</sub> nanoparticles

The 10 nm NaYF<sub>4</sub>: Er<sup>3+</sup>2 mol%, Yb<sup>3+</sup>20 mol% nanoparticle sample was synthesized using the synthetic procedure outlined in the following publication:

G. S. Yi and G. M. Chow, Advanced Functional Materials, 2006, 16, 2324.

No changes were made to the reported procedure.

# Synthesis of 30 nm and 100 nm NaYF<sub>4</sub> nanoparticles

The 30 nm and 100 nm NaYF<sub>4</sub>:  $Er^{3+}2$  mol%, Yb<sup>3+</sup>20 mol% nanoparticle samples was synthesized using the synthetic procedures outlined in the following publications:

H.-S. Qian and Y. Zhang, Langmuir, 2008, 24, 12123.

Z. Li and Y. Zhang, *Nanotechnology*, 2008, **19**, 345606/1.

No changes were made to the reported procedures.

# Synthesis of 30 nm NaYF<sub>4</sub> core/shell nanoparticles

The 30 nm NaYF<sub>4</sub>:  $Er^{3+}2$  mol%, Yb<sup>3+</sup>20 mol% / NaYF<sub>4</sub> core/shell nanoparticle sample was synthesized using the synthetic procedure outlined in the following publication:

H.-S. Qian and Y. Zhang, Langmuir, 2008, 24, 12123.

No changes were made to the reported procedures.

# **Powder X-ray Diffraction**

Powder X-ray diffraction (XRD) data were acquired with a Rigaku Miniflex Diffractometer. Concentrated colloidals of the NaYF<sub>4</sub> nanoparticle samples in hexanes were drop-cast onto a zero-background holder and allowed to dry. Step-scan X-ray powder diffraction data were collected using a Rigaku Miniflex Diffractometer. A Cr radiation source was used at 30 kV and 15 mA with a K $\beta$  filter, a 4.2° scattering slit, and a 0.3 mm receiving slit. XRD data was collected in the 20-140° (2 $\theta$ ) range with a scanning step size of 0.02° (2 $\theta$ )and a counting time of 3 s per step.

### **Transmission Electron Microscopy**

TEM was performed on the NaYF<sub>4</sub>:  $Er^{3+}2\%$ , Yb<sup>3+</sup>20% nanoparticle samples using a Hitachi H-7000 microscope operating at 75 kV equipped with a charge-coupled device (CCD)-camera. A small amount of the sample (~1 mg) was dispersed in 1 g of hexane to give an approximate 0.1 wt% solution. One drop of the resulting nanoparticle dispersion was dropcasted on a formvar/carbon film supported on a 300 mesh copper grid (3 mm in diameter)and allowed to dry in air at room temperature.

**Table S1.** Raw data used for calculation of upconversion quantum yields for NaYF<sub>4</sub>:  $Er^{3+} 2 mol\%$ , Yb<sup>3+</sup> 20 mol% samples. The muber of *hv* Absorbed must be multiplied by 10000 to take into the account attenuation factor of the neutral density filter.

| Samples | Power Density (W/cm <sup>2</sup> ) | Number of <i>hv</i> Emitted | Number of <i>hv</i> Absorbed |
|---------|------------------------------------|-----------------------------|------------------------------|
| ErYb1   | 20                                 | 40989                       | 132                          |
| ErYb2   | 150                                | 26118                       | 1154                         |
| ErYb3   | 150                                | 16101                       | 1321                         |
| ErYb4   | 150                                | 428                         | 1257                         |
| ErYb5   | 150                                | 27916                       | 1380                         |



**Figure S1.** Photos of the experimental set-up showing the position of the diode laser and integrating sphere in the fluorimeter.



**Figure S2.** Experimental X-ray diffraction (XRD) patterns for NaYF<sub>4</sub>:  $Er^{3+}$  2%, Yb<sup>3+</sup> 20% nanoparticleand bulk samples. Broad peak located at 30° is attributed to organic oleate layer.



**Figure S3.** Transmission Electron Microscopy (TEM) images of NaYF<sub>4</sub>:  $Er^{3+} 2\%$ , Yb<sup>3+</sup> 20% nanoparticles with average particle size of A) 10 nm, B) 30 nm, and C) 100 nm, respectively. D) TEM image of NaYF<sub>4</sub>:  $Er^{3+} 2\%$ , Yb<sup>3+</sup> 20% / NaYF<sub>4</sub> core/shell nanoparticles.