Supplementary Material (ESI) for Nanoscale This journal is (c) The Royal Society of Chemistry 2010

Electronic Supplementary Information

Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis

Sumanta Kumar Meher, P Justin and G Ranga Rao*

5

10

		XX7 * 1 / 1	$\langle 0/\rangle = 1$	\mathbf{W} : 1 : 1 : (0/) 1 : (
		to structural water		Weight loss (%) due to			
				crystalline water			
15	Sample	Temp.	Loss	Temp.	Decomp.	Loss	
		(°C)	(%)	(°C)	temp. (°C)	(%)	
	NiO-C-uc	25-205	18	205-400	290	20	
	NiO-N-uc	25-205	16	205-400	285	19	
	NiO-A-uc	25-205	11	205-400	285	20	
20							

Table S1 TGA data of uncalcined samples

Table S2 XRD results of various NiO samples

25			d spacing		Crystallite size	Average
	Sample	d_{hkl}	(Å)	FWHM	(nm)	crystallite
				(20)		size (nm)
		111	2.42	2.38	3.48	
	NiO-C	200	2.09	2.35	3.60	3.75
		220	1.48	2.20	4.18	
		111	2.43	2.50	3.32	
	NiO-N	200	2.10	2.56	3.30	3.49
30		220	1.49	2.38	3.86	
		111	2.44	2.75	3.05	
	NiO-A	200	2.11	2.90	2.91	3.18
		220	1.49	2.56	3.59	
			-			

Supplementary Material (ESI) for Nanoscale This journal is (c) The Royal Society of Chemistry 2010

³⁰ Fig. S1 Pore size distribution of calcined NiO-N, NiO-A and NiO-C samples obtained using HK method.

Fig. S2 FESEM images of (A) NiO-A-uc, (B) NiO-N-uc and (C) NiO-C-uc samples (uncalcined Ni hydroxides).

40

35

5

15

Supplementary Material (ESI) for Nanoscale This journal is (c) The Royal Society of Chemistry 2010

50

60

70

80

85

Fig. S3 Specific capacitance values of calcined NiO-N, NiO-A and NiO-C samples calculated from the cyclic voltammetry measurements at a scan rate of 5 mV s⁻¹.

Fig. S4 The specific capacitance values of NiO-N, NiO-A and NiO-C electrodes calculated from the respective impedance spectra as a function of the frequency.