Supporting information

Figure S1: Scaffold components and as prepared scaffolds were investigated by means of Fourier transform infrared spectroscopy: a-CaP, Col, PLGA, Col/PLGA (60/40), a-CaP/Col/PLGA (70/30/20).

Figure S2: The structure and morphology of fibres without a-CaP nanoparticles is shown by means of scanning electron micrographs. Smooth fibres were obtained for PLGA (a) and Col/PLGA (60/40) (b).

Figure S3: The interface of the double membrane layers was investigated by means of scanning electron microscopy with PLGA fibres in front of the a-CaP/Col/PLGA fibres in (a) and a-CaP/Col/PLGA fibres in front of the PLGA fibres in (b).

Electronic Supplementary Information for Nanoscale This journal is © the Royal Society of Chemistry 2010

Figure S4: X-ray diffraction patterns of a-CaP/Col/PLGA scaffolds before and after sintering for 30 min at 900°C were recorded. The effect of immersion time in simulated body fluid (SBF) was investigated with a time line that ranges from as prepared (a) over 36 h (b) to a final immersion time of 120 h (c). After immersion in SBF the sintered samples presented not only the characteristic β -TCP phase (26.0°, 28.1°, 31.4°, 32.8°, 34.6°) but also the hydroxyapatite (HAp) phase (28.7°, 31.8°, 32.1° 34.2°).

Electronic Supplementary Information for Nanoscale This journal is © the Royal Society of Chemistry 2010

Figure S5: Attenuated total reflection infrared spectra of scaffolds were recorded after immersion in simulated body fluid (SBF) for 36 h and 120 h. In (a) C=O stretching band at 1750 cm⁻¹, C-H stretching at 1450 cm⁻¹, O-C-O stretching at 1080 cm⁻¹ and C-CH₃ stretching at 1040 cm⁻¹ of PLGA were observed. In (b) additionally the amide I band at 1650 cm⁻¹ and the amide II band at 1530 cm⁻¹ of collagen in Col/PLGA (60/40) appeared. In (c) the formation of hydroxyapatite (HAp) upon immersion in SBF of a-CaP/Col/PLGA (70/30/20) was demonstrated by PO₄⁻ stretching bands at 1090 cm⁻¹, at 1050 cm⁻¹ and at 960 cm⁻¹.

Electronic Supplementary Information for Nanoscale This journal is $\ensuremath{\mathbb{C}}$ the Royal Society of Chemistry 2010

Figure S6: The Sirius red assay of a scaffold with its a-CaP/Col/ATCP side up during cell culture in osteogenic medium for 1 week shows that the a-CaP/Col/PLGA layer (stained in red) was ruptured and partly removed during the course of the cell culture study.

Electronic Supplementary Information for Nanoscale This journal is © the Royal Society of Chemistry 2010

Figure S7: The confocal laser scanning micrograph of a scaffold with its a-CaP/Col/PLGA side up during cell culture in osteogenic medium for 4 weeks illustrates that the PLGA fibres, visible in the fissure of the a-CaP/Col/PLGA layer, have cells adhered on them. This micrograph shows a magnification of the fissure indicated in Figure 10b.

	weight ratio a-CaP:Col:PLGA	voltage / kV	feeding rate $/ \text{ mL } \text{h}^{-1}$	distance: needle tip to collector / cm	solvent and concentration	relative humidity / %
pure PLGA	0:0:100	20	4	20	8 wt% PLGA in chloroform	55
Col/PLGA	0 : 60 : 40	20	1.5	20	4 wt% PLGA in HFIP 8 wt% Col in HFIP	40
a-CaP/Col	20:80:0	20	0.8	15	8 wt% Col in HFIP 4 wt% a-CaP in HFIP	40
	60:40:0	20	0.8	15	8 wt% Col in HFIP 4 wt% a-CaP in HFIP	50
a-CaP/Col/PLGA	70 : 30 : 20	20	1.5	20	8 wt% Col in HFIP 4 wt% a-CaP in HFIP	50

Table S1: Electrospinning parameters for the synthesis of nanofibres at room temperature

	weight ratio	diameter / nm
	weight fatio	
	a-CaP:Col:PLGA	\pm standard deviation (n = 100)
pure PLGA	0:0:100	5980 ± 1220
Col/PLGA	0:60:40	380 ± 190
a-CaP/Col	20:80:0	160 ± 120
	60:40:0	not measurable [‡]
a-CaP/Col/PLGA	70:30:20	200 ± 90

Table S2: Fibre diameters as a function of their composition	ion
--	-----

^{*} As no clear fibre structure could be identified (see Figure 2b), no diameter could be determined.