1	Facile Synthesis of Magnetic Metal (Mn, Fe, Co, and Ni) Oxide Nanocrystals via
2	Cation-Exchange Reaction
3	Jiajia Ning, ^{†,‡} Guanjun Xiao, [†] Li Wang, [‡] Bo Zou, ^{†,*} Bingbing Liu, [†] and Guangtian Zou [†]
4	State Key Laboratory of Superhard Materials and Department of Materials Science & Engineering,
5	Jilin University, Changchun 130012, P. R. China,
6	
7	* Corresponding authors. E-mails: <u>zoubo@jlu.edu.cn</u>
8	[†] State Key Laboratory of Superhard Materials, Jilin University.

⁹ [‡] Department of Materials Science & Engineering, Jilin University.

Figure S2. TEM images of Fe₂O₃ nanoparticles which were produced by different molar ratio of $Cu(OH)_2/FeCl_2, \quad Cu(OH)_2/FeCl_2=3:1 (a), Cu(OH)_2/FeCl_2=1:1 (b) and Cu(OH)_2/FeCl_2=1:3 (c).$

2

Figure S3. TEM images of Mn₃O₄ nanoparticles which were produced by different molar ratio of $Cu(OH)_2/MnCl_2$, $Cu(OH)_2/MnCl_2=3:1$ (a), $Cu(OH)_2/MnCl_2=1:1$ (b) and $Cu(OH)_2/MnCl_2=1:3$ (c).

Figure S4. XRD patterns of sample taken at different reaction time in experiment. The transformation from $Cu(OH)_2$ to Mn_3O_4 is clear.

Figure S5. XRD patterns of sample taken at different reaction time in experiment. The transformation from
Cu(OH)₂ to Fe₂O₃ is clear.

5

4

6 Figure S6. XRD patterns of sample taken at different reaction time in experiment. The transformation from

Cu(OH)₂ to CoO is clear.

7

8

9

12

Figure S7. XRD patterns of sample taken at different reaction time in experiment. The transformation from
Cu(OH)₂ to NiO is clear.

3

Figure S8. XRD patterns and TEM images

Figure S8. XRD patterns and TEM images of CuO nanocrystals, which is produced by decomposition of Cu(OH)₂ without any free metal cations.

Figure S9. The photo images of magnetic metal oxide reaction solution which are exposed to air.