Supplementary Material (ESI) for Nanoscale This journal is © the Royal Society of Chemistry 2011 ## Supporting Information For # Surface Engineering on Mesoporous Silica Chips for Enriching Low Molecular Weight Phosphorylated Proteins Ye Hu¹, Yang Peng¹, Kevin Lin², Haifa Shen¹, Louis Brousseau III¹, Jason Sakamoto¹, Tong Sun¹, Mauro Ferrari^{1,2,3,4} - 1. Department of Nanomedcine and Biomedical Engineering, the University of Texas Health Science Center at Houston - 2. Department of Biomedical Engineering, the University of Texas at Austin - 3. The University of Texas M.D. Anderson Cancer Center - 4. Department of Bioengineering, Rice University Figure S.1. Schematic representation of 2-step postsynthetic functionalization of mesoporous silica thin films with metal ion $(Zr^{4+} \text{ or } Ti^{4+})$. #### Supplementary Material (ESI) for Nanoscale #### This journal is © the Royal Society of Chemistry 2011 Figure S.2. MALDI TOF spectra of fractionated peptides processed by Ti^{4+} immobilized chip from (a) raw α -casein, (b) trypsinized α -casein, (c) trypsinized α -casein treated with phosphatase, and (d) raw α -casein treated with phosphatase. ### Supplementary Material (ESI) for Nanoscale #### This journal is © the Royal Society of Chemistry 2011 Figure S.3. MALDI TOF spectra of fractionated peptides processed by Ga^{3+} immobilized chip from (a) raw α -casein, (b) trypsinized α -casein, (c) trypsinized α -casein treated with phosphatase, and (d) raw α -casein treated with phosphatase.