Supporting Information

for

"Porous SnO₂ nanospheres as sensitive gas sensors for volatile

organic compounds detection"

Zhipeng Li, Quanqin Zhao, Weiliu Fan and Jinhua Zhan*

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Department of

Chemistry, Shandong University, Jinan 250100, Shandong (P. R. China)

Fax: +86-0531-8836-6280

E-mail: jhzhan@sdu.edu.cn

Fig. S1 XPS spectra of (a) Sn3d and (b) O1s of the porous SnO_2 nanospheres.

Fig. S2 (a) TEM and (b) SEM images of porous SnO_2 nanospheres after thermal treatment for 3 days at 300 °C.

Fig. S3 TEM image of SnO_2 nanoparticles.

Fig. S4 TEM image of the SnO_2 commercial powders.

Fig. S5 Schematic diagram of the electrical circuit in the China HW-30A gas sensitivity instrument.

SnO ₂ Sensing Materials	VOCs Sample	Operating Temperature (⁰ C)	VOCs lowest Concentrations (ppm)	Response Time (s)	Recovery Time (s)	Ref.
Hollow nanospheres	HCHO/2-Chloroethanol	260	0.5	13/15	14/17	This work
Hierarchical SnO ₂	Ethanol / HCHO	170/210	5/1	_	_	[1]
Biomorphic SnO ₂	Ethanol	170	1	11	31	[2]
Nanoplates	Ethanol	350	1.5	_	_	[3]
Nanoparticles	Ethanol	220	1.7	18	44	[4]
Nanowires	Acetone	290	20	7	10	[5]
Nanorods	Ethanol	300	10	1	1	[6]
Microspheres	Ethanol	260	10	16	23	[7]
SnO ₂ spheres	Ethanol	400	10	1	_	[8]

Table 1. The comparison on the SnO₂ nanomaterials sensing to VOCs vapor with some other reports.

[1] F. Song, H. L. Su, J. Han, J. Q. Xu, D. Zhang, Sens. Actuators, B, 2010, 145, 39-45.

[2] F. Song, H. L. Su, J. Han, D. Zhang, Z. X. Chen, Nanotechnology, 2009, 20, 495502.

[3] K. M. Li, Y. J. Li, M. Y. Lu, C. L. Kuo, L. J. Chen, Adv. Funct. Mater. 2009, 19, 2453-2456.

- [4] H. C. Chiu, C. S. Yeh, J. Phys. Chem. C, 111, 7256-7259.
- [5] L. P. Qin, J. Q. Xu, X. W. Dong, Q. Y. Pan, Z. X. Cheng, Q. Xiang, F. Li, Nanotechnology, 2008, 19, 185705.
- [6] Y. J. Chen, X. Y. Xue, Y. G. Wang, T. H. Wang, Appl. Phys. Lett, 2005, 87, 233503.

[7] J. P. Ge, J. Wang, H. X. Zhang, Xun Wang, Q. Peng, Y. D. Li, Sens. Actuators, B, 2006, 113, 937-943.

[8] H. R. Kim, K. C. Choi, J. H. Lee, S. A. Akbar, Sens. Actuators, B, 2009, 136, 138-143.