SUPPLEMENTARY INFORMATION

www.rsc.org/Nanoscale

Architectural integration of the components necessary for electrical energy storage on the nanoscale and in three dimensions

Christopher P. Rhodes,^{†a} Jeffrey W. Long,^{*a} Katherine A. Pettigrew,^{‡a} Rhonda M. Stroud^b and Debra R. Rolison^{*a}

Received 29th September 2010, Accepted 15th January 2011 DOI: 10.1039/c0nr00731e

Supplementary Information

10

25

30

40

45

X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopic measurements were taken on a Surface Science Instrument Model SSX-100-03 using an Al K_{α} X-ray source. ¹⁵ The survey spectra were obtained using a single scan with a step size of 1 eV; higher resolution spectra were obtained by averaging 10 scans, each taken with a step size of 0.1 eV. The energies of the XPS peaks were referenced to the C1s binding energy for adventitious carbon at 284.6 eV. The curve-fitted spectra of the Ru $3d_{52}$ region of (a) RuO_xH_y,

²⁰ (b) $ITO||PPO||RuO_xH_y$, and (c) $ITO||MnO_2||PPO||RuO_xH_y$ are shown in Fig. S1. The data are further discussed in the main text.

Fig. S1 The curve-fitted X-ray photoelectron spectra of the Ru 3d_{5/2} region of (a) RuO_xH_y, (b) ITO||PPO||RuO_xH_y, and (c) MnOx||PPO||RuO_xH_y.

[‡] Department of Chemistry, George Mason University, Fairfax, VA 22030, USA

^a US Naval Research Laboratory, Surface Chemistry Branch (Code 6170), 4555 Overlook Avenue SW, Washington, DC, 20375, USA. E-mail: jeffrey. long@nrl.navy.mil; rolison@nrl.navy.mil; Fax: +1-202-767-3321

 ^b US Naval Research Laboratory, Materials and Sensors Branch (Code 6360)
4555 Overlook Avenue SW, Washington, DC, 20375, USA

[†] Lynntech, Inc., 2501 Rudder Freeway S., College Station, TX 77845, USA

Fig. S2 Deposition of polymer at ITO||MnOx (working electrode) in monomer solution consisting of 50 mM phenol, 50 mM Me₄NOH, 0.1 M Bu₄NClO₄ in CH₃CN (Pt gauze counter electrode; AgQRE reference electrode); (A) Chronoamperometry data for potentiostatic step (1767 mV *vs.* Ag QRE for 1 h); 5 (B) selected cycles from subsequent potential-sweep deposition (767 mV *vs.* Ag QRE, 10 mV s⁻¹, 10 cycles).

10

Acknowledgements

Financial support for this work was provided by the US Office of Naval Research and the Office of the Secretary of Defense ONR-

¹⁵ MURI Program on 3D Architectures for Future Electrochemical Power Sources (2001–2006). C. P. R. was an ONR–MURI postdoctoral associate (2002–2005); K. A. P. was an NRC–NRL postdoctoral associate (2004–2007).