Supporting information

Electrochemical Synthesis of Ag⁰/Ag₂S Heterojunctions Templated on pre-formed Ag₂S Nanowires

Gilles R. Bourret and R. Bruce Lennox*

Department of Chemistry, McGill University and Center for Self-Assembled Chemical Structures (CSACS)

801 Sherbrooke St. W, Montreal, Quebec, H3A 2K6 (Canada) E-mail: bruce.lennox@mcgill.ca

Table of contents

Size distribution of the Ag_2S NW

Figure S1: Size distribution of the Ag_2S NW

IV curves of the Au/Ag₂S NW/Au junctions as a function of side and electrolysis time

Figure S2. IV curves of the electrolyzed Au/Ag₂S NW/Au junction as a function of side and electrolysis time. Prior to any reduction, there were no significant residual electrical charges: an almost zero current was observed at zero bias. Upon reduction of the junction, the current becomes non zero at zero bias. This offset increases as the electrolysis time increases along with the conductance of the network. As the reduction proceeds, the presence of residual charges increases, suggesting that some Ag⁺ ions are travelling through the nanowires, rather than being only reduced at the Ag⁰/Ag₂S/electrolyte interface. When the junction is electrolysed on the other side of the junction, the off current direction switches. This is reversible, suggestive of a transport of Ag⁺ ions that accumulate on the side where the electrolysis takes place. Since these residual charges fade with time, it is likely that this charging process is due to Ag⁺ accumulation.