Electronic Supplementary Information

Ferrocene-Functionalized Carbon Nanoparticles

Yang Song, Xiongwu Kang, Nathaniel B. Zuckerman, Bruce Phebus, Joseph P. Konopelski, and

Shaowei Chen*

Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa

Cruz, California 95064 USA

Figure S1. XPS surveys of the C1s and Fe2p electrons in ferrocenyl-functionalized carbon nanoparticles. In the right panel, the red curve is the smoothed profile of the experimental data (black curve).

^{*} To whom correspondence should be addressed. E-mail: shaowei@ucsc.edu

Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2011

Figure S2. Square wave voltammograms of FcCH₂-CNP nanoparticles acquired (top) in the dark or (bottom) under UV photoirradiation (370 nm) at a gold electrode in 0.1 M tetrabutylammonium perchlorate (TBAP) in DMSO. Electrode surface area 2.63 mm², particle concentration 3 mg/mL, increment of potential 4 mV, amplitude 25 mV and frequency 15 Hz. Solid curves are the experimental data and dashed lines represent the deconvolution of the voltammetric features.

λ (nm)

Figure S3. Near-infrared (NIR) spectra of FcCH₂-CNPs with the addition of varied amounts of NOBF₄ in DMSO. The starting solution of the carbon nanoparticles was 2 mL at a concentration of 0.1 mM, and the concentration of the NOBF₄ solution was 5 mM. Totally 800 μ L NOBF₄ was added to the solution at an increment of 25 μ L. Inset shows the variation of the absorbances at 1965 nm, 1896 nm, and 1436 nm with the amounts of NOBF₄ added.

Figure S4. UV-vis spectra of Fc-CNPs with the addition of varied amount of NOBF₄. The solutions were the same as those in Figure 5.