Electronic Supplementary Information (ESI)

Facile solution deposition of $ZnIn_2S_4$ nanosheet films on FTO substrates for photoelectric application

Shengjie Peng,^a Peining Zhu,^b Velmurugan Thavasi,^c Subodh G. Mhaisalkar^a, Seeram Ramakrishna*^{cd}

^a School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

^b Mechanical Engineering, National University of Singapore, Singapore 117576

^c NUS Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 117576

^d King Saud University, KSA. P.O. Box 2455, Riyadh, Saudi Arabia.

E-mail address: <u>mpesr@nus.edu.sg</u>,

Fig. S1 XRD pattern of the ZnIn₂S₄ precipitant product at the bottom of the autoclave.

Fig. S2 SEM image (a) and the magnified part (b) of the $ZnIn_2S_4$ precipitant product at the bottom of the autoclave.

Fig. S3 XRD pattern of the $ZnIn_2S_4$ film on the FTO substrate after heat treatment at 400 °C for 30 min in an Ar atmosphere.

Fig. S4 SEM image (a) and the magnified part (b) of the $ZnIn_2S_4$ film on the FTO substrate after heat treatment at 400 °C for 30 min in an Ar atmosphere.

Fig. S5 UV-vis spectra of the $ZnIn_2S_4$ film on FTO substrates after heat treatment at 400 °C for 30 min in an Ar atmosphere. The inset is the corresponding $(\alpha hv)^2$ vs. hv curve.