

1

Supporting Information

2 Preparation and Characterization of Polypropylene-graft-**Thermally Reduced Graphite Oxide** 3 with an Improved Compatibility with Polypropylene-based Nanocomposite

4

5 EXPERIMENTAL SECTION

6 *Materials*

7 Natural graphite powder (Alfa Aesar) was used as the starting material for the preparation of
8 graphite oxide (GO). The graphite had a particle size of ~70 μm with a purity of 99.9995% and a
9 density of 2.25 g/cm³. 1,6-diaminohexane (Alfa Aesar, purity > 98 %) was used without further
10 purification. Polypropylene-graft-maleic anhydride (PP-g-MA, 8-10 wt% MA) with an average Mw
11 of ~9,100 was obtained from Sigma-Aldrich Co Ltd. Polypropylene (average Mw ~190,000, melt
12 index= 35 g/10 min) was purchased from Sigma-Aldrich Co Ltd. and used as the matrix. Anhydrous
13 stabilized tetrahydrofuran (THF) was supplied by Lancaster Co., Eastgate, White Lund, Morecambe,
14 England.

15 ***Preparation of GO and thermally reduced graphite oxide (TRGO)***

16 Natural graphite powder was oxidized using the Staudenmaier method.¹ In this method, graphite
17 (5 g) was first mixed with sulfuric (87.5 mL) and nitric (45 mL) acid, and then stirred. Once the
18 graphite had become uniformly dispersed, potassium chlorate (55 g) was slowly added, and stirring

1 was continued for at least 96 hours. After the completion of the oxidation reaction, the mixture was
2 poured into deionized water and then filtered. The GO was rinsed repeatedly and redispersed in a 5%
3 aqueous solution of HCl three times. It was then washed repeatedly with deionized water until the
4 pH of the filtrate was neutral. The GO slurry was then dried and pulverized twice. Finally, the GO
5 was heated to 1050 °C in an inert gas atmosphere and held in a furnace for 30 s to form **TRGO**.

6 ***Functionalization of TRGO directly with 1, 6-diaminohexane***

7 **TRGO** prepared as described above (500 mg) was suspended in THF (200 mL) and sonicated for
8 30 min in an ultrasonic bath. The suspension was then transferred into a three-neck flask and
9 pre-purged with N₂. A THF solution (50 mL) containing 1, 6-diaminohexane (DAH) (1.45 g) was
10 added with stirring. The mixture was heated to 80 °C and refluxed for 24 h under N₂.

11 The mixture was then cooled, and separated by filtration through a 0.2 µm polytetrafluoroethylene
12 (PTFE) membrane, thoroughly washed with anhydrous THF and acetone to remove the residual
13 1,6-diaminohexane, and then dried in a vacuum oven at 80 °C overnight to remove the solvent.

14 ***Grafting of polypropylene on TRGO and preparation of PP/PP-g-TRGO nanocomposites***

15 PP-g-MA was grafted on to **TRGO**-DAH using a solution process. Toluene was first heated to 120
16 °C under N₂ and PP-g-MA was added and stirred until its complete dissolution to form a
17 homogeneous light-yellow solution. **TRGO**-DAH was then added into the resulting homogeneous
18 solution (the weight ratio of PP-g-MA: **TRGO**-DAH was 2:1) and refluxing at 120 °C was continued
19 for a further 24 h under N₂.

1 The mixture was next cooled to room temperature and the modified **TRGO** was then isolated by
2 filtration through a 0.2 μ m polytetrafluoroethylene (PTFE) membrane, and thoroughly washed with
3 methanol several times to remove any impurities, and then dried in a vacuum oven at 80 °C
4 overnight to remove the solvent. This yielded the polypropylene-grafted-thermally reduced graphite
5 oxide (PP-g-**TRGO**).

6 The PP-g-**TRGO** was homogenized and blended with a iPP matrix using a Brabender, and the
7 molten compounds were formed. Mixing parameters of 180 °C and 10 min were used, with a
8 rotational speed of 50 rpm. For comparison, nanocomposites of iPP/**TRGO** with various **TRGO**
9 contents (0.1, 0.25, and 0.5 wt% based on the neat **TRGO** contents determined by TGA) were also
10 prepared under the same processing conditions.

11 **Characterization and Instruments**

12 X-ray photoelectron spectra (XPS) measurements were performed using a PHI Quantera
13 SXM/AES 650 Auger Electron Spectrometer (ULVAC-PHI INC., Japan) equipped with a
14 hemispherical electron analyzer and a scanning monochromatic Al K α ($\hbar\nu$ =1486.6 eV) X-ray source.
15 A small spot lens system allowed the analysis of samples that had an area of less than 1 mm². X-ray
16 diffraction (XRD) was carried out at room temperature at a scan rate of 2° min⁻¹ using a Shimadzu
17 XD-5 X-ray diffractometer (40 kV, 30 mA, λ = 0.1542 nm) with a copper target and a Ni filter. The
18 Raman spectroscopy was carried out on a Stellar-PRO confocal Raman microscopy system
19 (MODU-LASER, LLC), with a laser wavelength of 488 nm. Transmission electron microscopy

1 (TEM) analyses were conducted using a JEM-2100 electron microscope at 200 kV, and the
2 **TRGO**-DAH and PP-g-**TRGO** for the TEM measurements were prepared using one drop casting on a
3 lacey copper grid followed by evaporation of the solvent in air at room temperature. Ultrathin
4 sections of iPP/**TRGO** and iPP/PP-g-**TRGO** nanocomposites with a thickness of less than 100 nm
5 were prepared by cutting with a diamond knife using a microtome technique, and collected on
6 300-mesh copper grids. The fractured surfaces of iPP/**TRGO** and iPP/PP-g-**TRGO** nanocomposites
7 were investigated using a field emission-scanning electron microscope (FE-SEM, JEOL JSM-6330,
8 Japan) with an accelerating potential of 15.0 kV. DSC measurements were conducting using a
9 differential scanning calorimeter (Perkin-Elmer, diamondDSC, USA) in a nitrogen atmosphere. The
10 samples were first heated from 25 °C to 190 °C (10 °C min⁻¹) and held at that temperature for 5 min
11 in order to remove the thermal history. Afterwards, the samples were cooled back to 25 °C with a rate
12 of 10 °C min⁻¹. Thermogravimetric analysis (TGA) was carried out using a DuPont-TGA951 at a
13 heating rate of 10 °C min⁻¹ in an N₂ atmosphere.

14

15

16

17

18

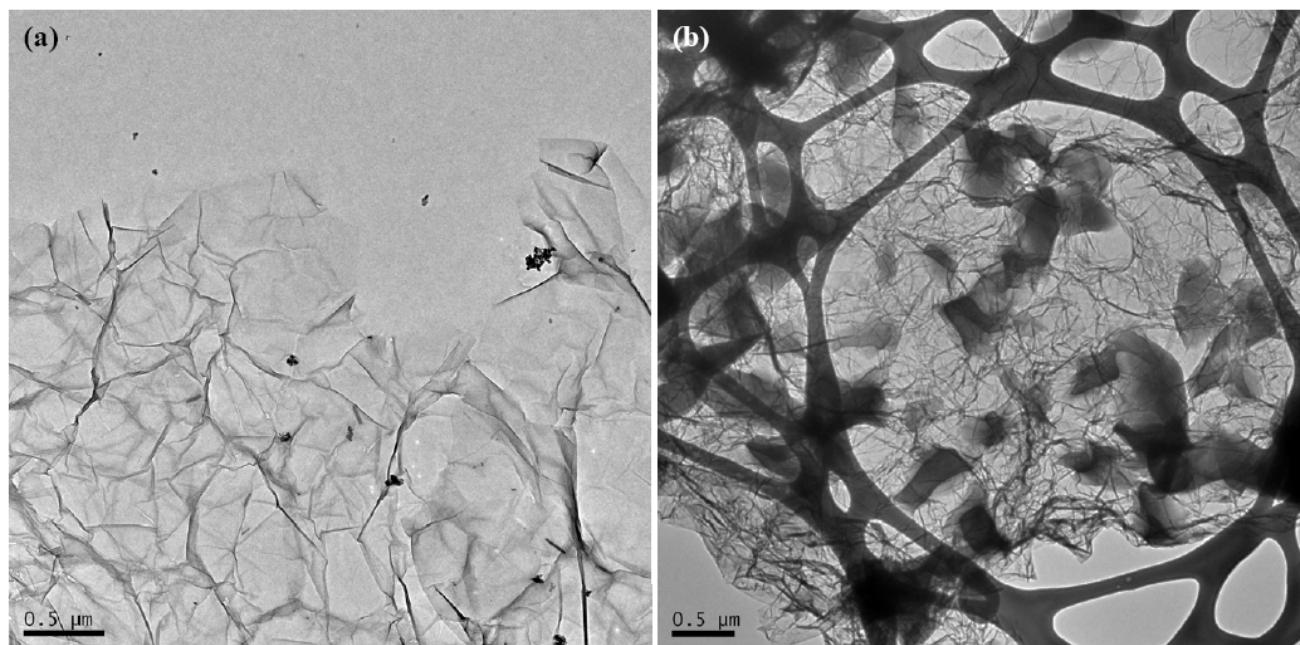
19

1 **Table S1.** Analysis of the deconvoluted (a) C1s peaks and (b) N1s peaks obtained from XPS and
 2 their relative atomic percentages for **TRGO**, **TRGO-DAH**, and **PP-g-TRGO**; (c) ATR-FTIR
 3 assignments for **TRGO-DAH**, **PP-g-TRGO**, and **PP-g-MA**.

4 (a)

Sample Name	C1s fitting									
	Binding energy (eV) (Relative atomic percentage %)									
	C=C ² (sp ²)	C-C ² (sp ³)	C-NH ₂ ³	C-OH ⁴⁻⁵	C-N-C ⁷	C-O-C ⁴⁻⁵	N-C=O ⁶	C=O ⁴⁻⁵	O-C=O ⁴⁻⁵	π-π*
TRGO	284.2 (71.1)	285.1 (10.6)	-	285.8 (4.74)	-	286.5 (5.09)	-	288.2 (3.03)	289.4 (2.78)	291 (2.57)
TRGO-DAH	284.0 (60.9)	284.8 (17.3)	285.4 (3.93)	285.8 (4.51)	286.1 (3.93)	286.5 (1.51)	-	288.2 (2.43)	289.2 (2.81)	291 (2.61)
PP-g-TRGO	284.2 (51.2)	284.8 (38.5)	-	385.5 (1.77)	286.1 (2.19)	286.5 (1.19)	287.9 (2.32)	288.2 (0.70)	289.2 (1.53)	291 (0.58)

5


6 (b)

Sample Name	N1s fitting					
	Binding energy (eV) (Relative atomic percentage %)					
	NH ₂ -C (primary amine) ⁷⁻⁹	C-NH-C (secondary amine) ¹⁰	C-N(C)-C (tertiary amine) ^{7, 11-12}	N-C=O (amide) ^{9,11}	(hydrogen bonding of secondary amine) ¹⁰	-NH ^{δ+} - (Protonated amine) ^{9,13}
TRGO	-	-	-	-	-	-
TRGO-DAH	398.5 (39.0)	399.3 (23.2)	400.3 (13.0)	-	401.1 (13.8)	401.6 (11.0)
PP-g-TRGO	-	399.2 (45.8)	-	400.5 (54.2)	-	-

7

8 (c)

Sample Name	Wavenumber (cm ⁻¹)	Assignment	Bond
TRGO-DAH	1731	C=O stretching	-COOH
PP-g-TRGO	1772	Anhydride C=O stretching	-C(O)O
	1708	C=O stretching	-COOH
	1650	Secondary amide C=O stretching	-CO-NH-
PP-g-MA	1776	Anhydride C=O stretching	-C(O)O
	1711	C=O stretching	-COOH

2 **Figure S1.** TEM images of (a) TRGO and (b) PP-g-TRGO.

3

4 **References:**

5 1. L. L. Staudenmaier, *Ber. Dtsch. Chem. Ges.*, 1898, **31**, 1481.

6 2. H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H. Windle, R. H. Friend, *J. Phys. Chem. B*, 1999, **103**, 8116.

7 3. T. Ramanathan, F. T. Fisher, R. S. Ruoff, L. C. Brinson, *Chem. Mater.*, 2005, **17**, 1290.

8 4. S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, R. S. Ruoff, *ACS Nano*, 2008, **2**, 572.

9 5. S. Park, D. A. Dikin, S. T. Nguyen, R. S. Ruoff, *J. Phys. Chem. C*, 2009, **113**, 15801.

10 6. S. H. Liao, M. C. Hsiao, C.Y. Yen, C. C. M. Ma, S. J. Lee, A. Su, M. C. Tsai, M. Y. Yen, P. L. Liu, *J. Power Sources*, 2010, **195**, 7808.

11 7. O. Plekan, V. Feyer, S. Ptasińska, N. Tsud, Vladimír Cháb, Vladimír Matolín, K. C. Prince, *J.*

1 *Phys. Chem. C*, 2010, **114**, 15036.

2 8. F. Zhang and M. P. Srinivasan, *Langmuir*, 2004, **20**, 2309.

3 9. S. H. Liao, C. Y. Yen, C. H. Hung, C. C. Weng, M. C. Tsai, Y. F. Lin, C. C. M. Ma, C. Pan, A.

4 Su, *J. Mater. Chem.*, 2008, **18**, 3993.

5 10. M. L. Abel, A. Rattana, John F. Watts, *Langmuir*, 2000, **16**, 6510.

6 11. R. B. Pernites, R. R. Ponnappati, R. C. Advincula, *Macromolecules*, 2010, **43**, 9724.

7 12. Y. Liu, S. H. Goh, S. Y. Lee, *Macromolecules*, 1999, **32**, 1967.

8 13. A. E. Hooper, D. Werho, T. Hopson, O. Palmer, *Surf. Interface Anal.*, 2001, **31**, 809.