Supplementary Materials

Monodisperse NaYbF₄:Tm³⁺/NaGdF₄ core/shell nanocrystals with

near-infrared to near-infrared upconversion photoluminescence and magnetic

resonance properties

Guanying Chen,[†][‡] Tymish Y. Ohulchanskyy,[†]* Wing Cheung Law,[†] Hans Ågren,[‡] and Paras N. Prasad[†]*

[†]Institute for Lasers, Photonics, and Biophotonics, The State University of New York University at Buffalo, Buffalo, New York 14260

[‡]Department of Theoretical Chemistry, Royal Institute of Technology, S-10691 Stockholm, Sweden *Corresponding Authors. E-mails: <u>tyo2@buffalo.edu</u>, <u>pnprasad@buffalo.edu</u>

Figure S1. Transmission electron images with higher magnification times for (A) NaYbF₄:2% Tm³⁺ core and (B) (NaYbF₄:Tm 2%)/NaGdF₄ core/shell powders.

Figure S2. Histograms of the size distribution of (A) NaYbF₄:2% Tm^{3+} core and (B) (NaYbF₄:Tm 2%)/NaGdF₄ core/shell nanocrystals.

Table S1. *d*-spacing values for NaYbF₄:2% Tm^{3+} nanocrystals determined via selected area electron diffraction (SAED) and standard x-ray diffraction (XRD) pattern of cubic NaYbF₄ of JCPDS 77-2043. As shown in Table S1, all the *d*-spacing values of NaYbF₄:2% Tm^{3+} nanocrystals agree well with the standard x-ray diffraction (XRD) pattern of cubic NaYbF₄ of JCPDS 77-2043

	d-spacing values (nm)	
h k l	NaYbF ₄ :Tm ³⁺ 2% (SAED)	Standard XRD pattern JCPDS 77-2043
(111)	0.319	0.313
(200)	0.273	0.271
(220)	0.194	0.192
(311)	0.166	0.163
(222)	0.159	0.156

Table S2. *d*-spacing values for NaYbF₄:Tm³⁺/NaGdF₄ core/shell nanocrystals derived from the SAED pattern and the standard XRD pattern of hexagonal NaGdF₄ of JCPDS 77-2043. As shown in Table S2, nearly all the *d*-spacing values of NaYbF₄:Tm³⁺/NaGdF₄ core/shell nanocrystals agree well with the standard x-ray diffraction (XRD) pattern of hexagonal NaGdF₄ of JCPDS 77-2043. It should be noted that the *d*-spacing value of the (100) crystal plane deviate a lot from that of the standard hexagonal NaGdF₄ of JCPDS 77-2043. This might be because the crystal of the NaGdF₄ shell adapt itself to grow (100) plane on top of the NaYbF₄ core along the (200) direction.

	<i>d</i> -spacing values (nm)	
h k l	NaYbF ₄ :Tm ³⁺ 2% (SAED)	standard XRD pattern JCPDS 27-0699
(100)	0.540	0.521
(110)	0.308	0.301
(200)	0.267	0.260
(111)	0.238	0.231
(201)	0.216	0.212
(210)	0.202	0.197
(211)	0.180	0.173

Figure S3. Energy level diagrams of Yb³⁺ and Tm³⁺ ions as well as the proposed upconversion mechanisms. Figure S3 shows the energy levels of the involved Yb³⁺ and Tm³⁺ ions as well as the proposed UC pathways under diode laser excitation of 975 nm. The pump laser photons of 975 nm can only excite the Yb³⁺ ion, because the Tm³⁺ ion has no such excited level above its ground state. As pictured in Figure S3, the first energy transfer process from the Yb³⁺ to the Tm³⁺ ion excites the ³H₆ to the ³H₅ state with the redundant energy dissipated by phonons. Subsequently, the Tm³⁺ ion relaxes nonradiatively to the lower ³F₄ state and further populates the ³F_{2,3} state through a second energy transfer process from the Yb³⁺ to the Tm³⁺ ion. The weak UC emission at 700 nm is then generated by radiative decay from the ³H₄ \rightarrow ³H₆ transition where the ³H₄ state is populated by the efficient nonradiative relaxation from the ³F_{2,3} state. The third process from the Yb³⁺ to the Tm³⁺ ion excites the ³H₄ to the ¹G₄ \rightarrow ³F₄ transitions,

respectively. Then, the ions at the ${}^{1}G_{4}$ state can be further promoted to the ${}^{1}D_{2}$ state by the fourth process from the Yb³⁺ to the Tm³⁺ ion, which emits UC emission at 450 nm of the ${}^{1}D_{2}\rightarrow{}^{3}F_{4}$ transition.