Electronic supplementary information (ESI)

Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application

MinHo Yang,^a Bong Gill Choi,^a Tae Jung Park,^{*b} Nam Su Heo,^b Won Hi Hong^a and Sang Yup Lee^{*a,b}

Fig. S1 AFM image of GO-monolayered sheet.

Fig. S2 TEM image of GO single sheet.

Fig. S3 XPS data of (a) GO, (b) CMG and (c) Au-CMG hybrids.

The survey scan XPS spectra showed the surface chemical states of GO, CMG, and Au-CMG hybrids; in comparison with the C1s spectrum of GO, those of CMG and Au-CMG clearly exhibited decreased peak intensities corresponding to epoxy/ether group (286.6 eV),¹ which indicates successful removal of oxygen groups on GO sheets after hydrazine treatment.

Electronic Supplementary Material (ESI) for Nanoscale This journal is C The Royal Society of Chemistry 2011

Fig. S4 C1s XPS spectra of (a) GO, (b) CMG and (c) Au-CMG hybrids.

Fig. S5 EDS mapping images from STEM and TEM images of Au-CMG hybrids.

Fig. S6 TGA curves of GO (black line) and Au-CMG (red line) hybrids.

Fig. S7 XRD pattern of Au-CMG hybrids.

Fig. S8 SEM images of the electrode surface deposited with GBP-OPH/Au-CMG at (a) low magnification and (b) high magnification.

Fig. S9 CVs of GBP-OPH/Au-CMG in 0.1 M KCl solution containing 5 mM $\text{Fe}(\text{CN})_6^{3-/4-}$ at different scan rates (20, 50, 100, 150, 200, 300 and 400 mV s⁻¹). The inset represents linear relationship of peak current versus square root of scan rate at GBP-OPH/Au-CMG hybrids.

Electrode	Pesticide	Sensitivity (nA µM ⁻¹)	Linear range (µM)	Limit of detection (nM)	Reference
GBP-OPH/Au-CMG	Paraoxon	55.54	2–20	95.4	This work
OPH/MWNT/GCE*	Methyl parathion	6	2–10	800	2
	Paraoxon	25	2–4	150	
OPH on Au electrode	Paraoxon	2.29	1–10	100	3
Packed OPH/CPE [¶]	Paraoxon	3.76	1–140	20	4
	Methyl parathion	3.15	1–140	20	

Table S1 Comparison of performance of the OPH biosensors by flow injection analysis

*GCE: glassy carbon electrode, [¶]CPE: carbon paste electrode

Supplementary References

- 1 C. Xu, X. Wang and J. Zhu, J. Phys. Chem. C, 2008, 112, 19841–19845.
- 2 R. P. Deo, J. Wang, I. Block, A. Mulchandani, K. A. Joshi, M. Trojanowicz, F. Scholz, W. Chen and Y. Lin, *Anal. Chim. Acta*, 2005, **530**, 185–189.
- 3 J. Wang, R. Krause, K. Block, M. Musameh, A. Mulchandani and M. J. Schöning, *Biosens. Bioelectron.*, 2003, 18, 255–260.
- 4 P. Mulchandani, W. Chen and A. Mulchandani, *Environ. Sci. Technol.*, 2001, **35**, 2562–2565.