Electronic Supplementary Information ESI

Electromagnetic and Microwave Absorbing Properties of Magnetic Nickel Ferrite Nanocrystals

Weimo $Zhu^{a\perp}$, Lei $Wang^{a\perp}$, Rui $Zhao^{*b}$, Jiawen Ren^a, Guanzhong Lu^a and Yanqin $Wang^{*a}$

^a Key Lab for Advanced Materials, Research Institute of Industrial Catalysis, East

China University of Science and Technology, Shanghai 200237, P. R. China.

Fax: 86 21 6425 3824; Tel: 86 21 6425 3824; E-mail: wangyanqin@ecust.edu.cn

^b Research Branch of Functional Polymer Composites, Institute of Microelectronic

and Solid State Electronic, University of Electronic Science and Technology of

China, Chengdu 610054, PR China E-mail: ruizhao@uestc.edu.cn

1. Experimental and characterization section

1.1 Synthesis

Sodium oleate (Chemical pure) and other analytical grade chemicals (including $FeCl_3 \cdot 6H_2O$, $NiCl_2 \cdot 6H_2O$, urea and ethanol) were purchased from Sinopharm Chemical Reagent Co.Ltd, and were used without further purification. The deionized water was self-made.

I) Synthesis of Ni²⁺ Fe³⁺₂-oleate precursors

The precursors were synthesized by the coprecipitation of oleate anions with Ni^{2+} , Fe^{3+} metal cations. First, 4mmol FeCl₃·6H₂O and 2mmol NiCl₂·6H₂O were dissolved10 mL deionized water to form solution I, and16mmol sodium oleate was dissolved in 40 mL water/ethanol mixture solvent (1:3, v/v) to form solution II. Then solution I was dropped into solution II slowly with magnetic stirring to get oleate complex. The as-prepared precursors were washed by the above mentioned mixture solvent several times to remove the impurities and then dried in vacuum at 100 °C to obtain the pure Ni²⁺Fe³⁺₂-oleate complex. In order to facilitate the magnetic stirring

and washing process, the synthesis of $Ni^{2+}Fe^{3+}_{2-}$ -oleate precursors can be operated at certain temperature, e.g. 60 °C.

II) Synthesis of NiFe₂O₄ nanocrystals

4.0 g self-made Ni²⁺ Fe³⁺₂-oleate complex was put in the Teflon-lined stainless steel autoclave, and a certain amount of alkali solution was added. The alkali solution was made of 3.0 g urea and 40 mL water/ethanol mixture solvent (1:1, v/v). Then, the autoclave was sealed and heated at 180 °C for 6 hours. After cooling down to room temperature automatically, the product was collected by centrifugation, washed with deionized water and ethanol, and finally dried in vacuum at 50 °C.

1.2 Characterization

The synthesized NiFe₂O₄ was characterized by wide-angle X-ray diffraction (WAXRD) on a Rigaku D/MAX-2550VB/PC diffractometer (Cu K α_1 radiation, λ =1.5406Å), operated at 40*kV* and 100*mA*, Transmission electron microscopy (TECNAI 20S-TWIN) and commercial (SQUID) magnetometer. For the measurement of microwave absorption properties, the synthesized NiFe₂O₄ nanocrystals were mixed with paraffin (weight ratio=1:3) and then pressed into a toroidal sharp with outer diameter of 7*mm* and inner diameter of 3*mm*. The complex permittivity and complex permeability were measured by an Agilent Vector Network Analyzer 8720 in the frequency of 2-18*GHz*.

2. Transmission line theory and details of simulation results by using Matlab

(1) Transmission line theory

For a single-layer absorbing material backed by a perfect conductor, the input impedance (Z_{in}) at the air-material interface is given by

$$\mathcal{E}_{r} \left(\mathcal{E}_{r} = \mathcal{E}' - j\mathcal{E}'' \right)$$
$$\mu_{r} \left(\mu_{r} = \mu' - j\mu'' \right)$$
$$Z_{in} = Z_{0} \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}} \tan\left(j\frac{2\pi f d}{c}\sqrt{\mu_{r}\varepsilon_{r}}\right)$$

Where *d* is the thickness of the absorber, *f* is the frequency, *c* is the velocity of light, μ_r is the complex permeability, and ε_r is the complex permittivity. The refection loss of normal incident electromagnetic wave at the absorber surface is given by

$$R = 20 \log \left| \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \right|$$

where Z_0 is the impedance of air.

(2) Details of simulation

The simulation program for calculating Reflection Loss by using Matlab software based on Transmission Line Theory.

- (1) % The determination of reflection loss.;
- (2) D = [% the first data % frequency (GHz) $\epsilon' \epsilon'' \mu' \mu''$
 - $1. \quad 0.500000 \quad 225.039981 \ 1274.955 \quad 0.901 \quad 0.154$

(experimental data)];

- (3) H=0.005; % Note the match thickness;
- (4) for m=1:201
- (5) Z₀=377;
- (6) $U_r=D(m,4)-i*D(m,5);$
- (7) $E_r=D(m,2)-i*D(m,3);$
- (8) R=i*2*pi*D (m,1) /300000000*sqrt (Ur*Er);
- (9) $Z_{in}=Z0*sqrt (U_r/E_r)*tanh (R*H);$
- (10)T= (Zin-Z0) / (Zin+Z0);
- (11)Ref (1,m) =20*log10 (abs (T));

(12)end

- (13)plot (D (1:201,1), ref (1,1:201))
- (14)title ('Reflection loss of composites for varying the thickness of the absorbant.
 - ');% Note the match thickness
- (15)xlabel ('Frequency/Hz');
- (16) ylabel ('Reflection loss/dB');

(17)A=ref';