Supporting information

Dark-field microscopy studies of polarizationdependent plasmonic resonance of single gold nanorods: Rainbow nanoparticles

Youju Huang and Dong-Hwan Kim*

School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore

^{*} Corresponding author: E-mail: dhkim@ntu.edu.sg; Tel: 65-67904111; Fax: 65-67911761 (DH. Kim)

S-TABLE 1. Detailed information regarding the average size of the gold nanorods. Each data point was obtained from at least 150 particles.

Sample number	Length/nm	Diameter/nm	Aspect ratio
AuNR-19	48.6 ± 4.6	18.8 ± 2.1	2.6 ± 0.3
AuNR-29	58.5±5.4	28.9 ± 2.3	2.0 ± 0.2
AuNR-37	63.2±5.2	36.7±3.1	1.7 ± 0.2
AuNR-41	74.7±6.3	40.6±4.2	1.8 ± 0.2

S-Figure 1. UV-Vis spectra of gold nanorods with different diameters (AuNR-18 (a), AuNR-29 (b), AuNR-37 (c) and AuNR-41 (d)). A decreased aspect ratio of the AuNRs results in a blue shift (arrow 1) in the longitudinal surface plasmon peak, whereas an increased diameter of the AuNRs causes a red shift in the transverse peak (arrow 2).

Electronic Supplementary Material (ESI) for Nanoscale This journal is $\textcircled{\sc c}$ The Royal Society of Chemistry 2011

S-Figure 2. Dark-field images of single nanorods of AuNR-19, AuNR-29, AuNR-37 and AuNR-41without polarization (a) and at different polarization angles (b: 0° ; c: 30° ; d: 60° ; e: 90° ; f: 120° ; g: 150° ; f: 180°). All scale bars represent 2 µm. Green double-arrows represent the incident light polarization.

S-Figure 3. The corresponding background subtracted LSPR spectra of the single AuNR shown in Figure 6 without polarization (a) and at different polarization angles (b: 0° ; c: 30° ; d: 60° ; e: 90° ; f: 120 $^{\circ}$; g: 150° ; f: 180°).