Electronic Supplementary Information (ESI)

Long-range Linear Elasticity and Mechanical Instability of Self-scrolling

Binormal Nanohelices under Uniaxial Load

Lu Dai¹, Li Zhang^{2,*}, Lixin Dong^{2†}, Wenzhong Shen^{3,*}, Xiaobin Zhang⁴, Zhizhen Ye⁴, and

Bradley J. Nelson²

¹School of Mathematics and Physics, Suzhou University of Science and Technology,

Suzhou 215011, P.R. China

²Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092 Zurich, Switzerland

³ Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education),

Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China

⁴State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering,

Zhejiang University, Hangzhou 310027, P.R. China

^{*} To whom correspondence should be addressed. E-mail: <u>lizhang@ethz.ch</u> and <u>wzshen@sjtu.edu.cn</u>

[†] Current address: Department of Electrical & Computer Engineering, Michigan State University, East Lansing, MI-48824, USA

A Cosserat curve, i.e., a directed curve with an orthonormal triad of directors and specified by four vector fields, follows the basic equilibrium equations [1]:

$$\hat{\tau}_{\alpha} - \varepsilon_{\alpha\beta\gamma} \tau_{\beta} W_{\gamma} = 0, \qquad (S1a)$$

$$\widehat{m}_{\alpha} - \varepsilon_{\alpha\beta\gamma} \left(m_{\beta} W_{\gamma} + \tau_{\beta} y_{\gamma} \right) = 0$$
(S1b)

where τ and *m* are the total force and torque across the cross section of the curve, respectively; ε is the permutation tensor, *W* and *y* are the director and position deformation measures, respectively. The Greek subscripts α , β , γ take on the values 1, 2, 3. $\hat{()} = \partial/\partial S = \lambda \hat{()} = \lambda \partial/\partial s$, and $\lambda = \partial s/\partial S$ is the stretch of the curve with *S* the arc length along a fixed reference configuration and *s* the one along a deformed configuration [2, 3].

As presented in Figure 2(e-f) of the paper, two types of helices with a rectangular cross section are considered, they are named normal and binormal helices, respectively [4, 5]. Assuming that a helix H_1 with the radius a_0 , pitch b_0 , length l_0 and number of turns N is curled from a nanobelt with a width of w and a thickness of t (w > t), when a tensile force F is exerted along the helical axis, the helix is elongated with a length of L and it is deformed to a new helical shape H_F , i.e. a radius a, a pitch b and a length l, simultaneously. Therefore, in the model H_1 is the fixed reference configuration and H_F is the deformed one, whose director basis D_1 (i=1,2,3) and d_1 are defined by a set of Euler angles ϕ_0 , θ_0 , ψ_0 and ϕ , θ , ψ , respectively. For the configuration of helix, ϕ_0 , θ_0 , $\dot{\psi}_0$, ϕ , θ , $\hat{\psi}$ are all constants [6]. We choose the third director D_3 of H_1 along the tangent to the centerline of the helical ribbon axis, and the force F along the e_3 axis of the fixed Cartesian basis. D_1 , D_2 and d_1 , d_2 are assumed to be along the direction of the largest and smallest bending stiffness of the cross section in H_1 and H_F , respectively.

The director deformation measures $W^{(0)}$ of $H_{\rm I}$ for a normal and a binormal helix are given by

$$W_{1N}^{(0)} = -\psi_0 \sin \theta_0, \ W_{2N}^{(0)} = 0, \ W_{3N}^{(0)} = \psi_0 \cos \theta_0.$$
 (S2a)

$$W_{1B}^{(0)} = 0$$
, $W_{2B}^{(0)} = \psi_0 \sin \theta_0$, $W_{3B}^{(0)} = \psi_0 \cos \theta_0$. (S2b)

respectively. We use W, director deformation measures for H_F , in the equilibrium equation Eq. (S1b) and obtain:

$$(A-C)W_{1N}W_{3N} - AW_{1N}^{(0)}W_{3N} + CW_{3N}^{(0)}W_{1N} + (E_1 - E_3)y_{1N}y_{3N} + E_3y_{1N} = 0,$$
 (S3a)

$$W_{2N}\left[-A\left(W_{1N}-W_{1N}^{(0)}\right)+BW_{1N}\right]=0,$$
 (S3b)

for a normal helix, and

$$(B-C)W_{2B}W_{3B} - BW_{2B}^{(0)}W_{3B} + CW_{3B}^{(0)}W_{2B} + (E_2 - E_3)y_{2B}y_{3B} + E_3y_{2B} = 0,$$
(S4a)

$$W_{1B}\left[-AW_{2B} + B\left(W_{2B} - W_{2B}^{(0)}\right)\right] = 0, \qquad (S4b)$$

for a binormal helix, where $E_1=E_2=KGtw$, $E_3=Etw$, $A=EI_1$, $B=EI_2$, and $C = 4GI_1I_2/(I_1+I_2)$ according to the scaled torsional stiffness [7]. *K* is the Timoshenko shear coefficient which is related to the Poisson's ratio *v* through K = (5+5v)/(6+5v) [8]. *E* and G=E/2(1+v) are the Young's and shear moduli of the nanobelt, respectively. $I_1 = w^3t/12$ and $I_2 = wt^3/12$ are the moment of inertia.

Since the shape of H_F is determined by the applied force, Eqs. (S3b) and (S4b) indicate that for a helical solution, the director deformation measures W have the form of:

$$W_{1N} = -\hat{\psi}\sin\theta$$
, $W_{2N} = 0$, $W_{3N} = \hat{\psi}\cos\theta$ (S5a)

for a normal helix, and

$$W_{1B} = 0, \ W_{2B} = \hat{\psi} \sin \theta, \ W_3 = \hat{\psi} \cos \theta$$
(S5b)

for a binormal helix. The relation $\hat{\psi} = \dot{\psi}_0$ is derived from $\hat{\psi} = \lambda/\sqrt{a^2 + b^2}$ [1]. The position vectors obtained from Eq. (1a) of H_F are expressed by:

$$y_{1N} = -\frac{F}{E_1}\sin\theta, y_{2N} = 0, \ y_{3N} = \frac{F}{E_3}\cos\theta + 1,$$
 (S6a)

for a normal helix; and

$$y_{1B} = 0, y_{2B} = \frac{F}{E_2} \sin \theta, y_{3B} = \frac{F}{E_3} \cos \theta + 1,$$
 (S6b)

for a binormal helix. From Eq. (S6), the stretch λ is obtained by:

$$\lambda = \sqrt{\frac{F^2}{E_1^2} \sin^2 \theta + \left(\frac{F}{E_3} \cos \theta + 1\right)^2}, \qquad (S7)$$

as well as the radius and pitch of H_{I} and H_{F} in terms of the Euler angles for both normal and binormal helices :

$$a_0 = \frac{\sin \theta_0}{\psi_0}, \ b_0 = \frac{2\pi \cos \theta_0}{\psi_0},$$
(S8a)

$$a = \frac{1}{\psi_0} \left[\left(\frac{F}{E_3} \cos \theta + 1 \right) - \frac{F}{E_1} \cos \theta \right] \sin \theta, \\ b = \frac{2\pi}{\psi_0} \left[\frac{F}{E_1} \sin^2 \theta + \left(\frac{F}{E_3} \cos \theta + 1 \right) \cos \theta \right]$$
(S8b)

By combination of Eq. (6) and the result of $W_{\alpha}^{(0)}$, W_{α} , $\psi = \psi_0$, Eq. (3a) and (4a) are given by:

$$\left(\frac{1}{E_3} - \frac{1}{E_1}\right) \cos\theta \sin\theta F^2 + \sin\theta F - C\dot{\psi}_0^2 (\cos\theta - \cos\theta_0) \sin\theta + EI_1[1 - (\Delta - 1)\delta_{i2}]\dot{\psi}_0^2 (\sin\theta - \sin\theta_0) \cos\theta = 0$$
(S9)

where $\Delta \equiv I_2/I_1$, i = 1 (or i = 2) for a normal (or binormal) helix and δ_{i2} is the Kronecker delta.

Furthermore, the torque (M) along the same direction as that of the force F is expressed by:

$$M = EI_1[1 - (\Delta - 1)\delta_{i2}]\dot{\psi}_0 \left(\sin\theta - \sin\theta_0\right)\sin\theta + C\dot{\psi}_0 \left(\cos\theta - \cos\theta_0\right)\cos\theta \quad (S10)$$

The spring constant *k* of H_F is deduced from Eqs. (S8) and (S9) according to the Hooke's law k=dF/dL:

$$k = -\frac{P_1 P_4}{N(P_3 P_4 + P_2)},$$

where $P_1 \equiv \left[\dot{\psi}/2\pi\right] / \left[1 + 2F\cos\theta \left(\frac{1}{E_3} - \frac{1}{E_1}\right)\right],$

$$P_{2} \equiv 2\left(\frac{1}{E_{3}} - \frac{1}{E_{1}}\right)\cos\theta\sin\theta F + \sin\theta,$$

$$P_{3} \equiv -\left[\frac{1}{E_{1}} + \left(\frac{1}{E_{3}} - \frac{1}{E_{1}}\right)\cos^{2}\theta\right] / \left[1 + 2F\cos\theta\left(\frac{1}{E_{3}} - \frac{1}{E_{1}}\right)\right],$$

$$P_{4} \equiv \left(\frac{1}{E_{3}} - \frac{1}{E_{1}}\right)\frac{1 - 2\cos^{2}\theta}{\sin\theta}F^{2} - \frac{\cos\theta}{\sin\theta}F + \dot{\psi}_{0}^{2}\left\{EI_{1}[1 - (\Delta - 1)\delta_{i2}] - C\right\}\frac{1 - 2\cos^{2}\theta}{\sin\theta}}{\sin\theta}$$

$$-EI_{1}[1 - (\Delta - 1)\delta_{i2}]\dot{\psi}_{0}^{2}\sin\theta - C\dot{\psi}_{0}^{2}\cos\theta_{0}\frac{\cos\theta}{\sin\theta}$$
(S11)

By measuring the geometry parameters a_0 , b_0 , t, w, N of the helix H_1 in its initial shape and the applied force F or torque M, Eqs. (S7-S11) can be used to calculate the radius a, pitch b, and the spring constant k of H_F with the conservation of length $l=\lambda l_0$, where $l_0 = N\sqrt{(2\pi a_0)^2 + b_0^2}$ and $l = N\sqrt{(2\pi a)^2 + b^2}$ are the unwound length of the nanobelt after and before loading, respectively. We note that the shear deformation and extension have been taken into account in the Cosserat curve model.

References:

- 1. A. B. Whitman, C. N. DeSilva, J. Elasticity 1974, 4, 265.
- 2. L. Dai, W. Z. Shen, Nanotechnology 2009, 20, 465707.
- 3. L. Dai, W. Z. Shen, J. Appl. Phys. 2009, 106, 114314.
- 4. A. F. Fonseca, C. P. Malta, D. S. Galvao, Nanotechnology 2006, 17, 5620.
- 5. A. Goriely, P. Shipman, Phys. Rev. E 2000, 61, 4508.
- 6. Z. Zhou, P.Y. Lai, B. Joos, *Phys. Rev. E* 2005, *71*, 052801.
- A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity; Cambridge University Press: Cambridge, 1982.
- W. A. Fate, High temperature elastic moduli of polycrystalline silicon nitride. J. Appl. Phys. 1975, 46, 2375.

Nomenclature

- τ (N): the total force across the cross section of the curve.
- m(N m): the total torque across the cross section of the curve.
- ε : permutation tensor.
- W: director deformation measures.
- y(m): position deformation measures.
- α, β, γ : Greek subscripts.
- *S*(m): arc length along a fixed reference configuration.
- s(m): arc length along a deformed configuration.
- λ : stretch of the curve.
- $H_{\rm I}$: helix before loading.
- $a_0(m)$: radius of helix $H_{\rm I}$.
- $b_0(m)$: pitch of helix $H_{\rm I}$.
- $l_0(m)$: length of helix $H_{\rm I}$.
- N: number of turns of helix.
- *w*(m): width of nanobelt.
- *t*(m): thickness of nanobelt.
- F(N): loading force along the helical axis.
- $H_{\rm F}$: helix after loading.
- L(m): elongated length of helix.
- a(m): radius of helix $H_{\rm F}$.
- b(m): pitch of helix $H_{\rm F}$.
- l(m): length of helix $H_{\rm F}$.

 D_i (i=1,2,3): director basis of helix H_1 along three orthonormal basis of fixed rectangular Cartesian coordinate system.

 d_i (i=1,2,3): director basis of helix H_1 along three orthonormal basis of fixed rectangular Cartesian coordinate system.

 ϕ_0 , θ_0 , ψ_0 (rad): set of Euler angles defining director basis D_i .

 ϕ , θ , ψ (rad): set of Euler angles defining director basis d_i .

 $W_{iN}^{(0)}$, $W_{iB}^{(0)}$ (i=1,2,3): director deformation measures of H_{I} along three orthonormal basis of fixed rectangular Cartesian coordinate system for a normal helix and a binormal helix, respectively.

 W_{iN} , W_{iB} (i=1,2,3): director deformation measures of $H_{\rm F}$ along three orthonormal basis of fixed

rectangular Cartesian coordinate system for a normal helix and a binormal helix, respectively.

 E_i , A, B, C, P_j (i=1,2,3; j=1,2,3,4): Intermediate parameters.

E(Pa): Young's modulus of the nanobelt.

G(Pa): shear modulus of the nanobelt.

v: Poisson's ratio.

 $I_1, I_2(m^4)$: moment of inertia.

 y_{iN} , y_{iB} (i=1,2,3)(m): position deformation measures of H_F along three orthonormal basis of fixed rectangular Cartesian coordinate system for a normal helix and a binormal helix, respectively.

 δ_{i2} : Kronecker delta.

M(N m): torque along the helical axis.

k(N/m): spring constant of H_F .

*v*_{SiGe}: Poisson's ratio of SiGe.

v_{Si}: Poisson's ratio of Si.

*v*_{Cr}: Poisson's ratio of Cr.

x(m): distance between two adjacent exposed edges of the nanobelt along its width direction.

 $\Delta L_{\rm S}({\rm m})$: relative stretch of nanobelt.

 F_{cr} (N): critical compressive load causing buckling.

 l_{cr} (m): critical length of helix before buckling.

 Δ_{cr} (m): critical decrease of length of helix before buckling.

 ξ (rad): pitch angle.

 α_0 (N m²): bending rigidity of the nanohelix.

Electronic Supplementary Material (ESI) for Nanoscale This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

 s_0 (m): length of nanobelt.