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A Cosserat curve, i.e., a directed curve with an orthonormal triad of directors and 

specified by four vector fields, follows the basic equilibrium equations [1]:  

0W       ,                                                       (S1a) 

   0m m W y                                                   (S1b) 

where τ and m are the total force and torque across the cross section of the curve, 

respectively; ε is the permutation tensor, W and y are the director and position deformation 

measures, respectively. The Greek subscripts α, β, γ take on the values 1, 2, 3. 

() ()S s       


, and s S    is the stretch of the curve with S the arc length along 

a fixed reference configuration and s the one along a deformed configuration [2, 3].  

As presented in Figure 2(e-f) of the paper, two types of helices with a rectangular cross 

section are considered, they are named normal and binormal helices, respectively [4, 5]. 

Assuming that a helix HI with the radius a0, pitch b0, length l0 and number of turns N is curled 

from a nanobelt with a width of w and a thickness of t (w > t), when a tensile force F is 

exerted along the helical axis, the helix is elongated with a length of L and it is deformed to a 

new helical shape HF, i.e. a radius a, a pitch b and a length l, simultaneously. Therefore, in the 

model HI is the fixed reference configuration and HF is the deformed one, whose director 

basis Di (i=1,2,3) and di are defined by a set of Euler angles 0 , θ0, ψ0  and  , θ, ψ, 

respectively. For the configuration of helix, 0 , θ0, 0


,  , θ,  are all constants [6]. We 

choose the third director D3 of HI along the tangent to the centerline of the helical ribbon axis, 

and the force F along the e3 axis of the fixed Cartesian basis. D1, D2 and d1, d2 are assumed to 

be along the direction of the largest and smallest bending stiffness of the cross section in HI 

and HF, respectively.  

The director deformation measures W(0) of HI for a normal and a binormal helix are 

given by 

(0)
01 0sinNW  



  , (0)
2 0NW  , (0)

03 0cosNW  


 .                                  (S2a) 
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(0)
1 0BW  , (0)

02 0sinBW  


 , (0)
03 0cosBW  



 .                                   (S2b) 

respectively. We use W, director deformation measures for HF, in the equilibrium equation 

Eq. (S1b) and obtain: 

   (0) (0)
1 3 1 3 3 1 1 3 1 3 3 1 0N N N N N N N N NA C W W AW W CW W E E y y E y       ,         (S3a) 

 (0)
2 1 1 1 0N N N NW A W W BW      ,                   (S3b) 

for a normal helix, and  

   (0) (0)
2 3 2 3 3 2 2 3 2 3 3 2 0B B B B B B B B BB C W W BW W CW W E E y y E y       ,         (S4a) 

 (0)
1 2 2 2 0B B B BW AW B W W      ,                   (S4b) 

for a binormal helix, where E1=E2=KGtw, E3=Etw, A=EI1, B=EI2, and  1 2 1 24C GI I I I   

according to the scaled torsional stiffness [7]. K is the Timoshenko shear coefficient which is 

related to the Poisson’s ratio ν through    5 5 6 5K     [8]. E and G=E/2(1+ν) are the 

Young’s and shear moduli of the nanobelt, respectively. I1= w3t/12 and I2= wt3/12 are the 

moment of inertia. 

Since the shape of HF is determined by the applied force, Eqs. (S3b) and (S4b) indicate 

that for a helical solution, the director deformation measures W have the form of:  


1 sinNW    , 2 0NW  , 

3 cosNW       (S5a) 

for a normal helix, and  

1 0BW  , 
2 sinBW   , 

3 cosW            (S5b) 

for a binormal helix. The relation  0 


 is derived from  [1]. The position 

vectors obtained from Eq. (1a) of HF are expressed by: 

1
1

sinN

F
y

E
  , 2 0Ny  , 3

3

cos 1N

F
y

E
  ,                      (S6a) 

for a normal helix; and  

1 0By  , 2
2

sinB

F
y

E
 , 3

3

cos 1B

F
y

E
  ,                         (S6b) 
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for a binormal helix. From Eq. (S6), the stretch λ is obtained by: 

22
2

2
1 3

sin cos 1
F F

E E
  

 
   

 
,                                         (S7) 

as well as the radius and pitch of HI and HF in terms of the Euler angles for both normal and 

binormal helices :   

0
0

0

sin
a




  , 0

0

0

2 cos
b

 


  ,                                (S8a) 

3 1
0

1
cos 1 cos sin

F F
a

E E
  



  
    

  
 , 2

1 3
0

2
sin cos 1 cos

F F
b

E E

   


  
    

  
   (S8b) 

By combination of Eq. (6) and the result of (0)W , W , , Eq. (3a) and (4a) are given 

by: 

           
 

 

2
2

0 0
3 1

2

01 2 0

1 1
cos sin sin cos cos sin

[1 ( 1) ] sin sin cos 0i

F F C
E E

EI

      

    

 
    

 

     





                         (S9)  

where 2 1I I  , i = 1 (or i = 2) for a normal (or binormal) helix and 2i is the Kronecker delta. 

Furthermore, the torque (M) along the same direction as that of the force F is expressed 

by:   

   0 01 2 0 0[1 ( 1) ] sin sin sin cos cos cosiM EI C              
 

   (S10) 

The spring constant k of HF is deduced from Eqs. (S8) and (S9) according to the Hooke’s law 

k=dF/dL: 

 
1 4

3 4 2

PP
k

N P P P
 


,      

where 1
3 1

1 1
2 1 2 cosP F

E E
  

            


, 
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2
3 1

1 1
2 cos sin sinP F

E E
  

 
   

 
,    

2
3

1 3 1 3 1

1 1 1 1 1
cos 1 2 cosP F

E E E E E
 

      
           

      
, 

 
22 2

2
04 1 2

3 1

2 2

0 01 2 0

1 1 1 2cos cos 1 2cos
[1 ( 1) ]

sin sin sin

cos
       [1 ( 1) ] sin cos

sin

i

i

P F F EI C
E E

EI C

   
  

    


   
        
 

    



 
  

    (S11) 

By measuring the geometry parameters a0, b0, t, w, N of the helix HI in its initial shape 

and the applied force F or torque M, Eqs. (S7-S11) can be used to calculate the radius a, pitch 

b, and the spring constant k of HF with the conservation of length l=λl0, where 

 2 2
0 0 02l N a b   and  2 22l N a b   are the unwound length of the nanobelt after 

and before loading, respectively. We note that the shear deformation and extension have been 

taken into account in the Cosserat curve model. 
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Nomenclature 

τ(N): the total force across the cross section of the curve. 

m(N m): the total torque across the cross section of the curve. 

ε: permutation tensor. 

W: director deformation measures. 

y(m): position deformation measures. 

α, β, γ: Greek subscripts. 

S(m): arc length along a fixed reference configuration. 

s(m): arc length along a deformed configuration. 

 : stretch of the curve. 

HI: helix before loading. 

a0(m): radius of helix HI. 

b0(m): pitch of helix HI. 

l0(m): length of helix HI. 

N: number of turns of helix. 

w(m): width of nanobelt. 

t(m): thickness of nanobelt. 

F(N): loading force along the helical axis. 

HF: helix after loading. 

L(m): elongated length of helix. 

a(m): radius of helix HF. 

b(m): pitch of helix HF. 

l(m): length of helix HF. 

Di(i=1,2,3): director basis of helix HI along three orthonormal basis of fixed rectangular Cartesian 

coordinate system. 

di(i=1,2,3): director basis of helix HI along three orthonormal basis of fixed rectangular Cartesian 

coordinate system. 
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0 , θ0, ψ0(rad): set of Euler angles defining director basis Di. 

 , θ, ψ(rad): set of Euler angles defining director basis di. 

(0)
iNW , (0)

iBW  (i=1,2,3): director deformation measures of HI along three orthonormal basis of fixed 

rectangular Cartesian coordinate system for a normal helix and a binormal helix, respectively. 

iNW , iBW  (i=1,2,3): director deformation measures of HF along three orthonormal basis of fixed 

rectangular Cartesian coordinate system for a normal helix and a binormal helix, respectively. 

Ei, A, B, C, Pj (i=1,2,3; j=1,2,3,4): Intermediate parameters. 

E(Pa): Young’s modulus of the nanobelt. 

G(Pa): shear modulus of the nanobelt. 

ν: Poisson’s ratio. 

I1, I2(m
4): moment of inertia. 

yiN, yiB (i=1,2,3)(m): position deformation measures of HF along three orthonormal basis of 

fixed rectangular Cartesian coordinate system for a normal helix and a binormal helix, 

respectively. 

2i  : Kronecker delta. 

M(N m): torque along the helical axis. 

k(N/m): spring constant of HF. 

νSiGe: Poisson’s ratio of SiGe. 

νSi: Poisson’s ratio of Si. 

vCr: Poisson’s ratio of Cr. 

x(m): distance between two adjacent exposed edges of the nanobelt along its width direction. 

∆LS(m): relative stretch of nanobelt. 

crF (N): critical compressive load causing buckling. 

crl (m): critical length of helix before buckling. 

cr (m): critical decrease of length of helix before buckling. 

 (rad): pitch angle. 

0 (N m2): bending rigidity of the nanohelix. 
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0s (m): length of nanobelt. 
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