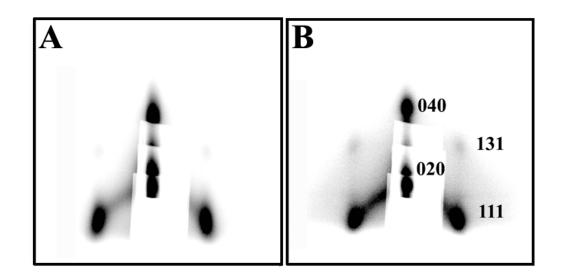
Supplemental Information

Low Temperature Crystallization of Transparent, Highly-ordered Nanoporous SnO₂ Thin Films: Application to Room-temperature Hydrogen Sensing

Shaofeng Shao,^{1,2} Xinmin Qiu,¹ Dafang He,¹ Ralf Koehn,² Naijia Guan,³ Xiaohua Lu,¹ Ningzhong Bao,^{1*} Craig A. Grimes^{1*}


^{1.} State Key of Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China.

² Department of Chemistry & Biochemistry, University of Munich, Germany.

^{3.} Lab of Functional Polymer Materials, N & T Joint Academy and Department of Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PRC *Email: nzhbao@njut.edu.cn; craig.grimes40@gmail.com

+ 2 + 1 + 1 + 1 + 1 + 1 + 1

Figure S1: Energy dispersive X-ray scattering (EDX) line measurement taken through positions 1 and 2 from the above image showing the presence of Pt and Sn.

Figure S2: Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) patterns of $Pt-SnO_2$ thin films after: (A) hydrothermal treatment at 100°C, and (B) annealing at 400°C. The samples were positioned with their surface quasi-parallel to the X-ray beam. The scattering patterns were recorded with a 2D detector set perpendicular to the incident beam.