Electronic Supplementary Material for

Synthesis of well-dispersed layered double hydroxide core/ordered mesoporous SiO₂ shell nanostructure and its

application in drug delivery

Haifeng Bao^{*a*, *b*}, Jianping Yang^{*c*}, Yan Huang^{*c*}, Zhi Ping Xu^{*d*}, Na Hao^{*b*}, Zhangxiong Wu^{*b*, *c*}, Gao Qing (Max) Lu^{*d*}, Dongyuan Zhao^{*b*, *c**}

a College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, P. R. China

b Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC3800, Australia

c Department of Chemistry and Laboratory of Advanced Materials, Fudan university, Shanghai, 200433, P. R. China

d Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia

Email: dyzhao@fudan.edu.cn

Figure S1. Wide-angle XRD patterns of As-synthesized Mg₂Al-Cl-LDH nanoplates at room temperature (25 °C) and hydrothermally treated at 100 °C for 4 h (black) and the LDH@mSiO₂ core@shell NPs (red).

Figure S2. The SEM image of the as-synthesized core@shell nanocomposites $LDH@mSiO_2 NPs$.

Figure S3. TEM images of the core@shell nanocomposites $LDH@mSiO_2$ NPs with a thickness of 20 nm (A) and 50 nm (B).

Figure S4. Hydrodynamic diameter distributions of LDH NPs (up) and LDH@*m*SiO₂ NPs with a thickness of 20 nm (down).

Figure S5. Confocal images of KB cells incubated with FITC-LDH@ $mSiO_2$ NPs (1000 μ g/ml) under 488 nm excitation, bright field and their merged image.