Supporting Information

Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

Figure S1. TEM pictures of: (A) PS–PVP–PEO and (B) PS-*b*-PMAPTAC-*b*-PEO micelles.

Figure S2. FT IR spectra of hollow silica nanospheres: (A) benzene silica hollow sphere (BS-HS) before solvent extraction; (B)–(D) refers to benzene silica (BS-HS), ethylene silica (ES-HS), and ethylene-dipropyldisulfide silica (EDS-HS) hollow nanospheres, respectively, after solvent extraction.

Figure S3. TEM pictures of ES–HS with BTES/PVP ratio 25.

Figure S4. Nitrogen sorption isotherm and pore-size distribution curves (inset) of BS–HS (sample D) synthesized in alkaline medium.

Figure S5. Raman spectrum of ethylene-dipropyldisulfide hollow silica nanosphere.

Figure S6. Cyclic performance of dense silica powder at 1 C rate between 0.0 and 2.5 V vs. Li/Li⁺.

Samples	Particles	Void space	Shell thickness	BET ^b surface	Pore volume ^a
	diameter/nm ^a	diameter/nm ^a	/nm ^a	area/m ² g ⁻¹	$/ {\rm cm}^3 {\rm g}^{-1}$
BS-HS (sample A) ^c	30.5 ± 1.5	17.5 ± 1.4	6.5 ± 0.5	436	1.03
(PS-PVP-PEO)					
ES-HS (sample B) ^c	30.3 ± 1.5	17 ± 1.7	6.6 ± 0.5	465	1.30
(PS-PVP-PEO)					
EDS-HS (sample C) ^c	31.8 ± 1.5	15.8 ± 1.5	8.0 ± 1.0	411	0.94
(PS-PVP-PEO) BS-HS (sample D) ^d	34.6 ± 1.5	16.2 ± 1.5	9.2 ± 1.0	429	1.48
(PS-PMATAC-PEO)					
ES-HS ^e	34.1 ± 1.5	15.8 ± 1.5	9.1 ± 1.0	383	0.85

Table S1. Physical characteristics of organosilica hollow nanospheres

^aVoid space diameter, wall thickness, and particles diameter were calculated from TEM image.

^bBET surface areas and pore volumes were obtained from nitrogen adsorption/desorption analyses.

^cHollow silica nanospheres were synthesized in acidic-medium using PS–PVP–PEO.

^dBenzene silica was prepared in alkaline-medium using PS-PMAPTAC-PEO.

^ePVP: BTES ratio is 1: 25.