Supporting Materials

6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell

Jeong-Hyeok Im, Chang-Ryul Lee, Jin-Wook Lee, Sang-Won Park, Nam-Gyu Park*

School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea

Figure S1. X-ray diffraction patterns for (a) as-prepared $CH_3NH_3PbI_3$ powder (not deposited on TiO₂ surface) and (b) nanoparticulate TiO₂ film on FTO glass with and without deposition of $CH_3NH_3PbI_3$ on TiO₂ surface. The powder in (a) was obtained by drying the γ -butyrolactone solution contained CH_3NH_3I and PbI_2 .

Figure S2. Number of perovskite QDs in a Gaussian box (yellow rectangle) with dimension of 28.07 nm × 44.91 nm was estimated to be 40/1260.6 nm², corresponding to $3.2 \times 10^{4}/\mu m^{2}$, and $3.8 \times 10^{4}/\mu m^{2}$ for a Gaussian box (blue rectangle) with dimension of 19.6 nm × 20 nm. Sample for TEM image was prepared using a 40.26 wt% perovskite precursor solution.

Figure S3. TEM images of the perovskite $(CH_3NH_3)PbI_3$ QD-deposited TiO₂ particles from (a) 10.05 wt%, (b) 21.13 wt% and (c) 30.18 wt% equimolar mixture of CH₃NH₃I and PbI₂ in γ -butyrolactone. Average diameter of perovskite QD was determined to be about 2.5 nm, regardless of perovskite precursor solution concentration.

Figure S4. Weight loss as a function of temperature for the powdered perovskite $(CH_3NH_3)PbI_3$. Thermogravimetric analysis was performed at rate of 10 °C/min under air atmosphere

Figure S5. Effects of post annealing temperature (a and b) and film thickness (c and d) on J-V curves and EQE spectra of the perovskite (CH₃NH₃)PbI₃ QD-sensitized solar cells. For annealing temperature experiments, TiO₂ films with thickness of about 5.5 μ m were used and a 40.26 wt% of the equimolar mixture of CH₃NH₃I and PbI₂ in γ -butyrolactone was used for perovskite QD deposition. For film thickness experiments, QD-sensitized TiO₂ films were annealed at 100 °C and a 41.22 wt% of the equimolar mixture of CH₃NH₃I and PbI₂ in γ -butyrolactone was used for perovskite QD deposition. J-V measurement was performed at AM 1.5 G one sun illumination (100 mW/cm²).

Figure S6. Absorption spectra of perovskite OD deposited TiO₂ films depending on postannealing temperature.