Supplementary figures

Nanoparticle Induced Piezoelectric, Super Toughened, Radiation

Resistant, Multi-functional Nanohybrids

Vimal K. Tiwari, T. Shripathi, N. P. Lalla and Pralay Maiti

Figure S1: *XRD* patterns of annealed cloisite 30B at 180 $^{\circ}$ C for 2 hours showing the same peak position before annealing. So, there is no degradation of organic component up to 180 $^{\circ}$ C or processing temperature of the nanohybrids.

Figure S2: Electron diffraction patterns showing (a) β -phase, (vicinity of nanoclay layer) (b) both α and β phase, (slightly away from clay layer) (c) amorphous pattern in between two clay layers apart from each other in *NC4* as shown in the main text.

Figure S3: FTIR spectra of CTFE and NC4 showing clear peak at 1275 cm⁻¹ is due to β -phase. The said peak is absent in pure CTFE.

Figure S4: (a) *XRD* patterns of pure *CTFE* and its indicated nanohybrids before irradiation. (b) deconvoluted *XRD* pattern of NC4 indicating different crystalline and amorphous peaks. (c) *DSC* thermograms (melting endotherm) of pure *CTFE* and its nanohybrids (heat of fusion and melting indicated for respective samples). Melting point increase in nanohybrids while heat of fusion decrease suggesting β -phase in *CTFE*.

Figure S5: (a) FTIR spectra of nanohybrids comparing MMT clay and 30B showing β -peaks at 510 and 840 cm⁻¹ for 30B clay while those peaks are categorically absent in MMT clay composites and (b) Schematic diagram showing α -phase crystallization on MMT clay while β -phase crystallize on 30B clay as a result of better interactions in presence of organic modifier.

Supplementary Table 1: The storage modulus of pure *CTFE* and *NC4* at different temperature ranges. The percentage increment was calculated in comparison to pure *CTFE*.

Sample	Temp. (°C)	Storage Modulus / GPa	% increase
CTFE	-70	11.5	-
NC4		19.5	70
CTFE	25	1.14	-
NC4		1.60	40
CTFE	125	0.13	-
NC4		0.21	62

Figure S6: Comparison of Number of pores and its distribution generated after SHI irradiation at fluence 1×10^{10} ion/cm² for indicated pure *CTFE* and *NC4* nanohybrid. Both the number density and dimension of pores are larger in pure *CTFE* as compared to nanohybrid. In other words, the shape and size of pores are controlled in nanohybrid.