Electronic Supplementary Information

Synthesis of chiral hybrid nanotubes of magnetite nanoparticles and conducting polymer

Masashi Mitsumori, Tsukasa Nakahodo and Hisashi Fujihara*

Department of Applied Chemistry, Kinki University, Kowakae, Higashi-Osaka 577-8502, Japan.

1) Synthesis of chiral stabilizer 1.

- 2) EDX spectrum and XPS spectrum of chiral magnetite, 1-Fe₃O₄ NPs.
- 3) SEM image of chiral hybrid nanotubes, (*R*)-1-Fe₃O₄-PT-NTs.

1) Synthesis of chiral stabilizer 1.

A new chiral stabilizer (R)- or (S)-1 was synthesized according to Scheme S1.

Scheme S1. Reagents and Conditions: (i) Br_2 , CH_2Cl_2 , 0 °C, 1 h; (ii) NaH, THF, 0 °C, 1 h; (iii) $ClCH_2OCH_3$, THF, room temp., 2 h; (iv) *n*-BuLi, THF, -78 °C, 2 h; (v) DMF, THF, room temp., 6 h; (vi) LiAlH₄, THF, 0 °C, 2 h; (vii) Et₃N, CH_2Cl_2 , 0 °C, 2 h; (viii) CH_3SO_2Cl , CH_2Cl_2 , room temp., 16 h; (ix) NaH, THF, 0 °C, 1 h; (x) (*R*)- or (*S*)-2, THF, reflux, 8 h; (xi) 12N-HCl/*i*-Pr-OH, CH_2Cl_2 , room temp., 7 h; (xii) K₂CO₃, MeOH, 0 °C, 2 h; (xiii) BrCH₂COOH, MeOH, reflux, 12 h.

(*R*)-**1** : FT-IR (cm⁻¹, KBr) 1731; ¹H-NMR (400 MHz, CD₂Cl₂) δ 2.95 (t, *J* = 6.8 Hz, 4H, -CH₂-CH₂-O-), 3.66 (t, *J* = 6.8 Hz, 4H, Ar-CH₂-CH₂-), 4.50 (ABq, *J* = 16.8 Hz, 4H, -CH₂-COOH), 4.54 (s, 4H, -CH₂-CH₂-O-CH₂-), 6.88 (dd, *J*₁ = 3.6 Hz, *J*₂ = 5.2 Hz, 2H, Ar-H), 6.92 (dd, *J*₁ = 3.6 Hz, *J*₂ = 5.2 Hz, 2H, Ar-H), 6.94-6.99 (m, 6H, Ar-H), 7.00 (s, 2H, Ar-H), 7.02-7.12 (m, 4H, Ar-H), 7.19 (dd, *J*₁ = 1.2 Hz, *J*₂ = 5.2 Hz, 2H, Ar-H), 7.21 (d, *J* = 9.2 Hz, 2H, Ar-H), 7.71 (s, 2H, Ar-H), 7.84 (d, *J* = 9.2 Hz, 2H, Ar-H); ¹³C-NMR (100 MHz, CD₂Cl₂) δ 30.1, 66.7, 70.3, 73.0, 115.2, 120.1, 124.0, 124.9, 125.9, 126.0, 126.7, 126.9, 127.2, 128.0, 128.3, 130.1, 130.5, 131.0, 133.6, 135.1, 135.6, 135.7, 136.9, 137.3, 153.1, 177.3; MS (FAB) *m/z* 1010 (M⁺).

The CD spectrum of (R)-1 is shown in Fig. S1-1.

Fig. **S1-1**. CD spectrum of (*R*)-1 in CHCl₃.

2) EDX spectrum and XPS spectrum of chiral magnetite, 1-Fe₃O₄ NPs.

Fig. S1. (a) EDX spectrum and (b) XPS spectrum of (R)-1-Fe₃O₄ NPs. (a) Cu peak of EDX spectrum is from the supporting copper grid.

3) SEM image of chiral hybrid nanotubes, (*R*)-1-Fe₃O₄-PT-NTs.

Fig. S2. SEM image of (R)-1-Fe₃O₄-PT-NTs. Scale: 500 nm.