Supporting Information

Size Effect of Endohedral Cluster on Fullerene Cage: Preparation and Structural Studies of $Y_3N@C_{78}-C_2$

Yihan Ma,^{*a,b*} Taishan Wang,^{**a*} Jingyi Wu,^{*a*} Yongqiang Feng,^{*a*} Wei Xu,^{*a*} Junpeng Zheng,^a Li Jiang,^a Chunying Shu^a and Chunru Wang^{*a}

^a Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Beijing 100190, China.

Fax: 86-10-62652120; *Tel:* 86-10-62652120; *E-mail: wangtais@iccas.ac.cn, crwang@iccas.ac.cn* ^b *Graduate School of the Chinese Academy of Sciences, Beijing 100049, China.*

Experimental Section:

1. The synthesis and purification of Y₃N@C₇₈

Graphite rods were core-drilled and subsequently packed with a mixture of Y/Ni_2 alloy and graphite powder in a weight ratio of 2:1. These rods were then vaporized in a Krätschmer-Huffman generator at 192 Torr He and 8 Torr N_2 . The resulting soot was Soxlet-extracted with toluene for 12 h. $Y_3N@C_{78}$ was isolated from various empty fullerenes and other yttrium metallofullerenes by multi-stage HPLC.

2. HPLC data of purified Y₃N@C₇₈

The stage 1 and 2 separations were repeated several times to obtain purified $Y_3N@C_{78}$. Figure S3 and Figure S4 show the HPLC data of purified $Y_3N@C_{78}$ with Buckyprep and Buckyprep-M columns. These HPLC analyses also confirm the purity of $Y_3N@C_{78}$.

Figure S1. The first stage HPLC profile of toluene extract of the soot containing mostly yttrium endohedral metallofullerenes $(20 \times 250 \text{ mm Buckyprep column}; \text{ flow rate } 12 \text{ mL/min}; \text{ toluene as eluent}).$

Figure S2. The second stage HPLC profile of $Y_3N@C_{78}$ fullerenes (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

Figure S3. Chromatogram of the isolated Y₃N@C₇₈ (20×250 mm Buckyprep column; flow rate 12 mL/min; toluene as eluent).

Figure S4. Chromatogram of the isolated Y₃N@C₇₈ (20×250 mm Buckyprep-M column; flow rate 6 mL/min; toluene as eluent).

3. CV spectrum of purified Y₃N@C₇₈

Electrochemistry experiments were carried out in *o*-DCB solvent with glassy carbon as the working, Pt flake and a SCE as the counter and reference electrodes, respectively. The potentials were referred to the E value of the Fc/Fc^+ redox couple measured in the sample solution.

The first and second oxidation potentials, $_{ox}E_1$ and $_{ox}E_2$, appear at 0.25 V and 0.53 V, respectively. While the first and second reduction potentials, $_{red}E_1$ and $_{red}E_2$, appear at -1.62 V and -1.99 V, respectively.

Figure S5. CV spectrum of Y₃N@C₇₈ in o-DCB. 0.05 M (n-Bu)₄NPF₆; scan rate, 100 mV s^{-1.}

Calculation Section: 1. DFT calculated results of Sc_xY_{3-x}N@C₇₈ (x=0-3) isomers

Density functional theory (DFT) calculations were preformed to study the relative energies and geometric structures of $Sc_xY_{3-x}N@C_{78}$ (x=0-3) isomers at GGA-PBE/DNP^{S1} level by using the Dmol³ code^{S2}. C₇₈ has in total 24 109 isomers, and five of them conform with the IPR^{S3}. As showed in reference S4, the IPR isomer D_{3h} : 24109, was found to be the most stable isomer of C_{78}^{6-} . The second most stable isomer is the non-IPR C_2 : 22010 cage, which contains two pairs of adjacent pentagons.^{S4} Therefore, we executed our calculations based on these two C_{78} isomers. The geometry optimizations were carried out with no symmetry and spin constraints in Cartesian coordinates and with analytically constructed energy gradient.

Sp	ecies	ΔE
Sc ₂ YN@C ₇₈ -	D_{3h}	0
Sc ₂ YN@C ₇₈ -	C_2	5.798376
Sc ₂ YN@C ₇₈ -	$C_2 - 1^a$	9.146516

Table S1. Rela	tive Energies	$(\Delta E, kJ/mol$) of $Sc_2YN@C_{78}$	isomers
----------------	---------------	---------------------	----------------------	---------

^a One isomer of Sc₂YN@C₇₈, whose two Sc atoms are all coordinated to two pairs of fused pentagons.

Table S	2. Relative Energies	(ΔE, kJ/mol)) of ScY ₂ N@C ₇₈	Isomers

Species	ΔE
$ScY_2N@C_{78}-D_{3h}$	9.713157
$ScY_2N@C_{78}-C_2$	0
$ScY_2N@C_{78}-C_2-1^b$	4.363889

^b One isomer of ScY₂N@C₇₈, whose one Sc atom is coordinated to one pair of fused pentagons.

	Table S	S3. Ro	elative	Energies	$(\Delta E,$	kJ/mol) of Sc	$_{3}N@C_{78}$	Isomers
--	---------	--------	---------	----------	--------------	--------	---------	----------------	---------

Species	ΔE
$Sc_3N@C_{78}-D_{3h}$	0
$Sc_3N@C_{78}-C_2$	18.43717

Table S4. Relative Energies (ΔE, kJ/mol) of Y₃N@C₇₈ Isomers

Species	ΔE
$Y_{3}N@C_{78}-D_{3h}$	18.00902
$Y_3N@C_{78}-C_2$	0

Table S5. Selected bonding length (Å) in optimized structures of Sc₃N@C₇₈-D_{3h}, Y₃N@C₇₈-C₂,

Sc ₂ YN($a_{C_{78}}-D_{3h}$	and Sc	$Y_2N@$	$C_{78}-C_{7}$
002110	$\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} $	and De	1 21 (00)	-10 - 2

_		-			
Sc ₃ N@C ₇₈ - D _{3h}	Sc-cage	2.25	Sc-N	2.01	
	Y ₁ -cage	2.43	Y ₁ -N	2.07	
$Y_3N@C_{78}-C_2$	Y ₂ -cage	2 40	Y ₂ -N	2 10	
	Y ₃ -cage	2.49	Y ₃ -N	2.10	
	Y ₁ -cage	2.39	Y ₁ -N	2.12	
$Sc_2YN@C_{78}-D_{3h}$	Sc ₂ -cage	2 22	Sc ₂ -N	1.96	
	Sc ₃ -cage	2.22	Sc ₃ -N		
	Sc ₁ -cage	2.30	Sc ₁ -N	1.94	
$ScY_2N@C_{78}-C_2$	Y ₂ -cage	2.51	Y ₂ -N	2.16	
	Y ₃ -cage	2.31	Y ₃ -N		

References

S1. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

S2. (a) Delley, *J. Phys. Chem. B*, 1990, **92**, 508. (b) Delley, *J. Phys. Chem. B*, **113**, 7756. Dmol³ is available as part of Material Studio and Cerius2 by Accelrys Inc.

S3. P. W. Fowler, D. E. Manolopoulos, *An Atlas of Fullerenes*:Clarendon Press: Oxford, U.K., 1995.

S4. A. A. Popov, M. Krause, S. F. Yang, J. Wong and L. Dunsch, *J. Phys. Chem. B*, 2007, **111**, 3363-3369.