Supplementary Information

Nanoscale characterization and magnetic reversal mechanism investigation of electrospun $NiFe_2O_4$ multi-particles-chain nanofibres

Junli Zhang^{§a}, Jiecai Fu^{§a}, Guoguo Tan^a, Fashen Li^a, Caiqin Luo^a, Jianguo Zhao^c, Erqing Xie^a*, Desheng Xue^a, Haoli Zhang^d, Nigel J Mellors^b and Yong Peng^a*

[§]These authors contributed equally to this work. E-mail: <u>pengy@lzu.edu.cn or xieeq@lzu.edu.cn</u>

This file contains supplementary Figures S1 to S3 with legends.

Figure S1 (a) Optical micrograph of a uniaxially aligned array of $NiFe_2O_4$ multi-particles-chain nanofibres by collecting the fibers with a silicon wafer, followed by calcinantion in air at 600 °C. Inset is the SEM image showing the alignment. (b) Schematic illustrating the experimental condition during the VSM measurement.

Figure S2 The cross section morphology of the individual NiFe₂O₄ multi-particles-chain nanofibres.

Figure S3 HRTEM images of (111) that random aquired from the same $NiFe_2O_4$ multi-particles-chain nanofibre. All scale bars are 5 nm.