α-Fe₂O₃ Nanotubes-Reduced Graphene Oxide Composites as Synergistic Electrochemical Capacitor Materials Electronic Supplementary Information

Contents List

1.	Table S1 Electrochemical properties of various metal oxide-graphene materials composite electrodes explored in aqueous electrolytes	2
2.	Experimental section	3-5
3.	Fig. S1 UV-Vis absorption spectra of GO and rGO	6
4.	X-ray Photoelectron Spectroscopy Analysis Fig. S2 and S3 X-ray photoemission spectra (XPS) of Fe2p and C1s core levels. Table S2 Percentage of various oxygenated functional groups from deconvolution of the C1s peak	7-8
5.	Fig. S4 Ragone plot (power density vs. energy density) of α -Fe ₂ O ₃ NTs and α -Fe ₂ O ₃ NTs-rGO composites.	9
6.	Supplementary discussion on electrochemical capacitance performance of various iron oxides and iron oxide based composite materials in aqueous electrolyte in comparison with present study	10-11
7.	Table S3 Electrochemical capacitance performance of various iron oxides and iron oxide based composite materials in aqueous electrolyte.	12
8.	References	13-14

Pseudocapactive material	Graphene materials	Electrolyte	V. vs. Ag/AgCl	C _m (F/g)	Method	Ref.
MnO ₂ microparticles	EG	1 M Na ₂ SO ₄	-0.08 to 0.92	124	GS 0.1 A/g	2,3
MnO ₂ nanorods	EG	2 M (NH ₄) ₂ SO ₄	-0.08 to 0.92	158	$\frac{\text{GS}}{2 \text{ mA/cm}^2}$	4
ZnO nanoparticles	rGO	1 M KCl	-0.58-0.42	11.3	CV 10 mV/s	5
SnO ₂ nanoparticles	rGO	1 M H ₂ SO ₄	0 to 1	43.4	CV 2 mV/s	6
MnO ₂ nanoneedles	GO	1 M Na ₂ SO ₄	-0.08 to 0.92	216	GS 0.15 A/g	7
Ni(OH) ₂ nanoplates	GS	1 M KOH	0 to 0.55	935	GS 2.8 A/g	8
Mn ₃ O ₄ nanoparticles	rGO	1 M Na ₂ SO ₄ 6 M KOH	-0.28 to 0.72 -0.58 to 0.42	175 256	CV 5 mV/s	9
MnO ₂ nanoparticles	rGO	1 M Na ₂ SO ₄	-0.18 to 0.82	310	CV 2 mV/s	10
Co ₃ O ₄ nanoparticles	rGO	6 M KOH	-0.08 to 0.32	243.2	CV 10 mV/s	11
Co(OH) ₂ nanoparticles	rGO	6 M KOH	-0.28 to 0.42	972.5	GS 0.5 A/g	12
Fe ₃ O ₄ nanoparticles	rGO	1 M KOH	-0.88 to 0.12	480	GS 5 A/g	13
ZnO nanoparticles	rGO	0.1 M Na ₂ SO ₄	-0.08 to 0.92	308	GS 1 A/g	14
$\frac{\left[\text{Co}_{0.66}\text{Al}_{0.34}(\text{OH})_2\right]^{+}}{\text{nanosheets}}$	GO	1 M KOH	0 to 0.55	1031	GS 1 A/g	15
α-Ni(OH) ₂ nanoparticles	rGO	6 M KOH	0 to 0.45	1215	CV 5 mV/s	16
CeO ₂ nanoparticles	rGO	6 M KOH	-0.08 to 0.42	208	GS 1 A/g	17

Table S1. Electrochemical properties of various metal oxide-graphene materials composite electrodes explored in aqueous electrolytes

EG: exfoliated graphite; GO: graphene oxides; rGO: reduced graphene oxides; GS: graphene sheets

Experimental Section

Synthesis of rGO, α -Fe₂O₃ nanotubes (NTs), and α -Fe₂O₃ NTs-rGO composites

GO used in this work was prepared by the Hummers method. α -Fe₂O₃ NTs were synthesized by a hydrothermal treatment of FeCl₃ solution in the presence of NH₄H₂PO₄ at 220°C. Detailed procedures have been reported [1]. For the synthesis of α -Fe₂O₃ NTs-rGO composites, ~20 mg of GO was added to 0.4 mmol of α -Fe₂O₃ NTs and dispersed in 40 mL of deionized water. The dispersion was then hydrothermally treated at 180 °C for 24 h.

Characterizations

The morphologies of the as-synthesized nanocomposites were examined with a JEOL JSM-6400F field emission scanning electron microscope (FESEM) operating at 5 kV in high vacuum. TEM and HRTEM analysis, selected-area electron diffraction (SAED), and energy dispersive X-ray spectroscopy (EDS) were performed with a field-emission transmission electron microscope (TEM, JEOL, JEM 2010, accelerating voltage 200 kV). The crystal structure of the materials were analyzed by a Bruker D/MAX 2500 X-ray diffractometer with Cu K_{α} radiation $\lambda = 1.54056$ Å. Raman spectrum was recorded by a micro-Raman system (Jobin-Yvon T64000) with a typical laser power of 0.2 mW under ambient conditions. Elemental analyses were carried out on a Perkin-Elmer 2400 elemental analyzer. Based on elemental analyses, the weight percentage of rGO content is 16 wt % in the α -Fe₂O₃ NTs-rGO composite.

Preparation of working electrodes

The electrodes for the electrochemical studies were prepared by the doctor-blade technique using a mixture of the active materials (Fe₂O₃ NTs; rGO; Fe₂O₃ NTs-rGO), Super P carbon (MMM Ensaco) and binder (Kynar 2801) in the mass ratio 70:15:15, using N-Methylpyrrolidone (NMP) as the solvent for the binder. The slurry was pressed on an etched-copper foil (thickness, 15 µm, Alpha Industries Co Ltd., Japan) as current collector. The electrode area and mass of active material were 2 cm² and 3–4 mg. A Shimadzu Libror AEM 5200 electronic microbalance was used for weighing of the electrodes.

Electrochemical studies

An electrochemical half-cell was assembled in a three-electrode configuration with Pt wire as the counter electrode, Ag/AgCl (3 M KCl) as the reference electrode, and the above-mentioned prepared materials as working electrodes. In the setup of working electrode, the conductive side of the copper foil was placed on a gold plate connected to a Teflon-sealed copper rod. The front side of the copper foil (with active materials) was sealed with a Teflon cell with an O-ring. Thus the working electrode had a geometric area exposed to electrolyte of 0.785 cm² and contained about 1.2-1.5 mg of the above mentioned mixed slurry. All electrochemical measurements were carried out in 1 M Na₂SO₄ solution as electrolyte. Cyclic voltammetry (CV), galvanostatic charge-discharge (GS) studies, and electrochemical impedance spectroscopy (EIS) were conducted using an Autolab PGSTAT 30 potentiostat/ galvanostat at room temperature (~24 °C).

The specific capacitances C_m were calculated from the CV curved based on the following equation:

$$C_m = \frac{1}{mR\Delta V} \int I(V)dV$$

where *m* is the mass of active material, *R* is the scan rate, ΔV is the potential window of scanning, and the integral area under the CV curve.

The specific capacitances C_m were also calculated from the galvanostatic discharge curves using the equation as follows:

$$C_m = \frac{I}{\frac{\Delta V}{\Delta t} \cdot m}$$

where $\Delta V/\Delta t$ is the average slope of the discharge curve after the IR drop, Δt is the discharge time, *m* is the active mass and *I* is the discharge current.

The energy density and power density can be further evaluated from the GS results using the following equations:

$$F = \frac{1}{2} C_m (\Delta V)^2$$
$$P = \frac{E}{\iota}$$

where *E* is the energy density and C_m is the specific capacitance, ΔV is the potential window, *P* is power density and *t* is the discharging time.

Fig. S1. UV-Vis absorption spectra of GO and rGO

The UV-vis absorption spectra show that the absorption peak (227 nm) of GO corresponding to $\pi \rightarrow \pi^*$ transitions of aromatic C=C bonds red-shifts to 257 nm after hydrothermal treatment at 180°C for 24 h. Together with the increase in absorption in the whole spectral region, these show that the hydrothermal treatment restores the electronic conjugation within the G nanosheets is restored. The small red shift of the Plasmon excitation peak of rGO from 257 to 266 nm in the α -Fe₂O₃ NTs composite indicates interaction between the π -electrons in r-GO and the α -Fe₂O₃ NTs in the resultant composite. The band at 427-437 nm is attributed to ligand to metal charge-transfer transitions of α -Fe₂O₃.

X-ray Photoelectron Spectroscopy Analysis

Fig. S1 High resolution Fe 2p core-level XPS spectra of the α -Fe₂O₃ and α -Fe₂O₃-rGO.

Fig. S3 High resolution C 1s core-level XPS spectra of (a) GO and (b) α -Fe₂O₃-rGO.

Table S2	Table S2. Percentage of various oxygenated functional groups					
	C-C	С-О	C=O	C(0)0		
		(epoxy)				
B. E. (eV)	284.8	286.3	287.8	289.0		
GO	52.1%	31.5%	9.4%	6.9%		
Fe ₂ O ₃ -rGO	60.3%	26.5%	6.4%	6.9%		

The Fe 2p spectral line shapes for the α -Fe₂O₃ and α -Fe₂O₃ –rGO are equivalent. The two major components at binding energies of 711.6 and 724.8 eV accompanied by a satellite are attributed to 2p_{3/2}

and $2p_{1/2}$ core levels for α -Fe₂O₃. Figure S3 shows high-resolution narrow scans from the carbon region of GO and α -Fe₂O₃-rGO, with the four most prominent deconvoluted components of the C 1s envelope shown in each panel, as summarized in Table S2. The original GO signal shows two separated peaks, as expected, due to the high percentage of oxygen functionalities. After the hydrothermal treatment, tailing at the higher binding energy region is reduced, which suggests that the decrease in relative content of carbon species bound to oxygen.

Fig. S4. Ragone plot (power density vs. energy density) of α -Fe₂O₃ NTs and α -Fe₂O₃ NTs-rGO composites. The energy and power densities were derived from GS data at various current densities.

Energy density and power density are two essential key factors for evaluating the power applications of ECs. In principle, calculation of energy and power density should base on electrochemical performance from full cells for practical means. This study focuses on development of negative electrode for asymmetric ECs and electrochemical data were obtained from half cells. Energy density and power density of α -Fe₂O₃ NTs and α -Fe₂O₃ NTs-rGO composites are calculated mainly for comparison and by no means to provide practical values. It must be noted that calculation of energy and power density based on capacitances measured from half cells often leads to overestimation of energy and power output (e.g. overall capacitance of a full cell should not exceed a quarter of that from a single electrode).

Fig. S4 shows the Ragone plot for the α -Fe₂O₃ NTs and α -Fe₂O₃ NTs-rGO composite in the potential window of 0 to -1 V in 1 M Na₂SO₄ aqueous electrolyte. Due to the high specific capacitance and wide working potential range, the α -Fe₂O₃ NTs- rGO composite provided a much higher energy and power density than the α -Fe₂O₃ NTs.

Supplementary discussion: Electrochemical capacitance performance of various iron oxides and iron oxide based composite materials in aqueous electrolyte compared with present study

In order to further evaluate the performance of this hybrid composite in a broader view, Table S3 summarizes the reported electrochemical capacitance performances of various iron oxide and iron oxide-based composite materials in aqueous electrolyte. As far as the electrolytes are concerned, in comparison with organic electrolytes, aqueous electrolyte used in ECs have the advantages of high ionic conductivity, low cost, non-flammability, good safety, and convenient assembly in air. Prior studies on the electrochemical capacitance of various iron oxide or hydroxide based electrodes in aqueous electrolytes have reported the specific capacitances ranging from 5 to 150 F/g. A few exceptions were reported by Wu et al.²³ and Zhitomirsky et al.²⁷ Zhitomirsky et al. achieved high specific capacitance of 210 F/g for porous γ -Fe₂O₃ in Na₂S₂O₃ electrolyte, under very strict conditions: at very low weight loading of 0.1 mg/cm². Wu et al. ²³ achieved a specific capacitance of 170 F/g for electroplated Fe₃O₄ granules in Na₂SO₃ electrolyte. However, sulfite based aqueous electrolyte is not ideal for asymmetric ECs due to interference from the electrochemical oxidation of the sulfite anion, which will limit the available potential window at the positive electrode of an asymmetric EC (see supporting information in Ref. 34). Moreover, iron oxide-based ECs commonly suffered from cycling stability due to the reductive dissolution of the iron oxides when cycled to progressively negative potentials, especially when weak acidic Li₂SO₄ electrolyte was used.^{28-30, 34} Long *et al.* proposed the use of borate-buffered Li_2SO_4 to reduce this problem ³⁴

To further optimize the capacitance, cycling stability, and high rate property of iron oxide compounds, it is a current research trend to fabricate composites of iron oxides with electroactive and conducting materials (e.g. conducting polymers and carbon nanomaterials). Zhao *et al.*²⁶ demonstrated that by treating Fe₃O₄ nanowires with pyrrole, the specific capacitance in 0.1 M Na₂SO₃ electrolyte can be improved by 84 % from 106 F/g to 190 F/g, as well as better capacitance retention upon 500 cycles (from 75 % to 84 %). In addition, PANI-Fe₃O₄ in 1 M H₂SO₄ electrolyte was able to exhibit high

specific capacitance of 213 F/g and 146 F/g at current density of 1 mA/cm² and 5 mA/cm². However, the capacitance was found to reduce to to 85 % after 300 cycles, probably due to the unfavorable strong acidic electrolyte. Most recently, Yan *et al.*¹³ reported a markedly high specific capacitance of 890 F/g and 480 F/g at current density of 1 A/g and 5 A/g, respectively, for the spray deposited Fe₃O₄-rGO composite. However, all the above examples used both corrosive KOH and H₂SO₄ which are not compatible for MnO₂-based positive electrodes or Na₂SO₃ with limited positive potential window. Herein, our α -Fe₂O₃ nanotubes-rGO composite electrodes in neutral electrolyte with high specific capacitance (181 F/g), high energy (90.8 Wh/kg) and high power density (1500 W/kg) at current density of 3 A/g, remarkably long cycle life, become a competitive alternative for their ultimate use as negative electrodes in aqueous asymmetric ECs. Besides, neutral electrolytes Na₂SO₄ used in our study, possesses additional advantages of environmental friendliness and convenience for end-user disposal than ECs based on strong acidic or alkaline electrolytes

Table S3. Electrochemical capacitance performance of various iron oxides and iron oxide based composite materials in aqueous electrolytes.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Iron oxides	Electrolyte	V range	Cm	Method	Cycle life	Ref.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(V vs. Ag/AgCl)	(F/g)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fe ₃ O ₄ electrocoagulated	$1 \text{ M Na}_2 \text{SO}_4$	-0.75 to 0.50	5.3	GS 15 mA/g		18
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	powder				10 111 18		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fe ₃ O ₄	1 M Na ₂ SO ₃	0 to 1.2	27.0	GS	2000	19
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	electrocoagulated	1 M Na ₂ SO ₄		5.7	15 mA/g	(78 %)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	powder	1 M KOH		5.3			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe ₃ O ₄ precipitated powder	0.1 M Na ₂ SO ₄	-0.80 to 0.25	75	CV 10 mV/s		20, 21
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe ₃ O ₄ electrodeposited porous film	1 M Na ₂ SO ₄	-0.60 to 0	105	CV 20 mV/s		22
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fe ₃ O ₄ electroplated	1 M Na ₂ SO ₃	-0.70 to -0.20	170	CV		23
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	granules	1 M Na ₂ SO ₄		25	2 mV/s		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 M KOH		3			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fe ₃ O ₄ nanoparticles	$1 \text{ M Na}_2 \text{SO}_4$	-0.08 to 0.92	82	CV	1000	24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.10.11.00	1.00.1.0.10	110	50 mV/s	(~60 %)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe_3O_4	$I M Na_2 SO_3$	-1.28 to 0.12	118	GS	500 (~89 %)	25
Fe ₃ O ₄ nanoparticles 0.1 M Na ₂ SO ₃ -1.28 to -0.08 12 GS 26 Fe ₃ O ₄ nanowires 106 0.1 mA/cm ² 500 (~75%) 500 (~75%) 500 (~84%) Pyrrole treated-Fe ₃ O ₄ 190 190 500 (~84%) 500 (~84%)			1 29 4 - 0.00	10	6 mA		2(
Pyrrole treated-Fe $_3O_4$ 1000.1 mA/cm500 (~75%)nanowires190500 (~84%)	Fe_3O_4 nanoparticles	$0.1 \text{ M} \text{ Na}_2 \text{SO}_3$	-1.28 to -0.08	12	0.1 mA/am^2		26
nanowires	Pyrrole treated-Fe-O			100	0.1 IIIA/CIII	500(~73%)	
	nanowires			170		500 (*0470)	
γ-Fe ₂ O ₃ porous film 0.25 M Na ₂ SO ₄ -0.98 to -0.18 43 CV 100 mV/s 100 27	γ-Fe ₂ O ₃ porous film	0.25 M Na ₂ SO ₄	-0.98 to -0.18	43	CV 100 mV/s	100	27
$0.25 \text{ M} \text{ Na}_2 \text{S}_2 \text{O}_3$ 82 (~68 %)	1 2 - 5 F	$0.25 \text{ M} \text{Na}_2\text{S}_2\text{O}_3$		82		(~68 %)	
$0.25 \text{ M Na}_2\text{S}_2\text{O}_3$ 210 CV 2 mV/s		$0.25 \text{ M} \text{Na}_2\text{S}_2\text{O}_3$		210	CV 2 mV/s		
α -Fe ₂ O ₃ 1 M Li ₂ SO ₄ -0.98 to -0.18 135 CV 500 (~70 %) 28,	a-Fe ₂ O ₃	1 M Li ₂ SO ₄	-0.98 to -0.18	135	CV	500 (~70 %)	28,
electrodeposited 10 mV/s 29	electrodeposited				10 mV/s		29
nanosheets	nanosheets	1141:00		11/		1000	
α -Fe ₂ O ₃ mesoporous 1 M L ₁₂ SO ₄ -0.68 to -0.08 116 GS 1000 30	α -Fe ₂ O ₃ mesoporous	$I M L_{12}SO_4$	-0.68 to -0.08	116	GS 0.75 A/s		30
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$		1 M L : CO	0.02 += 0.19	11/	0.75 A/g	(~/4 %)	21
$\begin{array}{c cccc} p - FeOOH & 1 M Ll_2 SO_4 & -0.95 to -0.18 & 110 & GS & & 51 \\ nanocolumns & 0.5 A/g & 0.5 $	p-FeOOH	$1 \text{ M Ll}_2 \text{SO}_4$	-0.93 10 -0.18	110	0.5 A/a		31
$\alpha_{\rm L}$ i E ₂ O2 0.5 M Li ₂ SO, -0.78 to -0.08 50 CV 500 32	α_{-} L iFeO2	0.5 M Li-SO	_0.78 to _0.08	50	CV	500	37
nanoparticles 10 mV/s $(\sim 100 \text{ \%})$	nanoparticles	0.0 101 E12004	-0.70 10 -0.00	50	10 mV/s	(~100 %)	52
$\frac{1}{10000000000000000000000000000000000$	PANI-Fe ₃ O ₄	1 M H ₂ SO ₄	-0.08 to 0.67	213	GS	300	33
composites 1 mA/cm^2 (~85 %)	composites				1 mA/cm^2	(~85 %)	
FeOOH-coated carbon 2.5 M Li ₂ SO ₄ -0.80 to 0.20 84 CV 200 (~58 %) 34	FeOOH-coated carbon	2.5 M Li ₂ SO ₄	-0.80 to 0.20	84	CV	200 (~58 %)	34
nanofoams Buffered 2.5 M 72 5 mV/s 1000 (~81%)	nanofoams	Buffered 2.5 M		72	5 mV/s	1000 (~81%)	
Li ₂ SO ₄		Li ₂ SO ₄					
Fe_3O_4 nanoparticles 1 M KOH -0.88 to 0.12 104 GS 5 A/g 10000 13	Fe ₃ O ₄ nanoparticles	1 M KOH	-0.88 to 0.12	104	GS 5 A/g	10000	13
rGO 139 GS 5 A/g (~100 %)	rGO			139	GS 5 A/g	(~100 %)	
Fe ₃ O ₄ -rGO 480 GS 5 A/g	Fe ₃ O ₄ -rGO			480	GS 5 A/g		
Fe3O4-rGO 890 GS 1 A/g Fe3O4-rGO 200 2000	Fe ₃ O ₄ -rGO	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.00 /	890	GS I A/g		.1 •
α -Fe ₂ O ₃ nanotubes 1 M Na ₂ SO ₄ -1.00 to 0 30 CV 2000 (~92%) this	α -Fe ₂ O ₃ nanotubes	$I M Na_2SO_4$	-1.00 to 0	30	CV	2000 (~92%)	this
210 2.5 mV/s 2000 study (~100%)	u-rc ₂ U ₃ in 1 S-IGU			210	2.3 IIIV/S	(~100%)	study

References

- 1. H-M. Fan, J-B. Yi, Y. Yang, K-W. Kho, H-R. Tan, Z-X. Shen, J. Ding, X-W. Sun, M. C. Olivo, Y-P. Feng Single-crystalline MFe₂O₄ nanotubes/nanorings synthesized by thermal transformation process for biological applications. *ACS Nano* **2009**, 3, 2798-2808.
- 2. Wan, C.; Azumi, K.; Konno, H. Hydrated Mn (IV) oxide-exfoliated graphite composites for electrochemical capacitor. *Electrochim. Acta* **2007**, *52*, 3061-3066.
- 3. Wan, C.; Azumi, K.; Konno, H. Effect of synthesis route on the performance of hydrated Mn(IV) oxide-exfoliated graphite composites for electrochemical capacitors. *J. Appl. Electrochem*.**2007**, *37*, 1055-1061.
- 4. Yan, J.; Fan, Z.; Wei, T.; Qie, Z.; Wang, S.; Zhang, M. Preparation and electrochemical characteristics of manganese dioxide/graphite nanoplatelet composites. *Mater. Sci. Eng. B* **2008**, *151*, 174-178.
- 5. Zhang, Y.; Li, H.; Pan, L., Lu, T.; Sun, Z. Capacitive behavior of graphene-ZnO composite film for supercapacitors. *J. Electroanal. Chem.* **2009**, 634, 68-71.
- Li, F.; Song, J.; Yang, H.; Gan, S; Zhang, Q., Han, D.; Ivaska, A.; Niu, L. One-step synthesis of graphene/SnO₂ nanocomposites and its application in electrochemical supercapacitors. *Nanotechnol.* 2009, 20, 455602-455607.
- 7. Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. Graphene oxide-MnO₂ nanocomposites for supercapacitor. *ACS Nano* **2010**, 4, 2822-2830.
- 8. Wang, H.; Casalongue, H. S..; Liang, Y.; Dai, H. Ni(OH)₂ nanoplates on graphene as advanced electrochemical pseudocapacitor materials. *J. Am. Chem. Soc.* **2010**, 132, 7472-7477.
- 9. Wang, B.; Park, J.; Wang, C.; Ahn, H.; Wang, G. Mn₃O₄ nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. *Electrochim. Acta.* **2010**, 55, 6812-6817.
- Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Fast and reversible surface redox reaction of graphene-MnO₂ composites as supercapacitor electrodes. *Carbon* 2010, 48, 3825-3833.
- 11. Yan, J.; Wei, T.; Qian, W.; Shao, B.; Zhao, Q.; Zhang, L.; Fan, Z. Rapid microwave-assisted synthesis of graphene nanosheet/Co₃O₄ composite for supercapacitors. *Electrochim. Acta.* **2010**, 55, 6812-6817.
- 12. Chen, S.; Zhu, J.; Wang, X. One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties. *J. Phys. Chem. C* **2010**, 114, 11829-11834.
- Shi, W. H.; Zhu, J.; Sim, D. H.; Tay, Y. Y.; Lu, Z.; Zhang, X.; Sharma, Y.; Srinivasan, M.; Zhang, H.; Hng, H. H.; Yan, Q.; Achieving high specific capacitances in Fe₃O₄/reduced graphene oxide nanocomposites. *J. Mater. Chem.* **2011**, 21, 3422-3427.
- Chen, Y.-L; Hu, Z.-A.; Chang, Y.-Q.; Wang, H.-W.; Zhang, Z.-Y.; Yang, Y.-Y.; Wu, H.-Y. Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. *J. Phys. Chem. C* 2011, 115, 2563-2571.
- 15. Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors. *Chem. Commun.* **2011**, 47, 3556-3558.
- 16. Lee, J. W.; Ahn, T.; Soundararajan, D.; Ko, J. M.; Kim, J.-D. Non-aqueous approach to the preparation of reduced grapheme oxide/α-Ni(OH)₂ hybrid composites and their high capacitance behavior. *Chem. Commun.* **2011**, 47, 6305-6307.
- 17. Wang, Y.; Guo, C. X.; Liu, J.; Chen, T.; Yang, H.; Li, C. M. CeO₂ nanoparticles/grapheme nanocomposite-based high performance supercapacitor. *Dalton Trans.* **2011**, 40, 6388-6391.
- 18. Wu, N.-L.; Wang, S.-Y.; Han, C.-Y.; Wu, D.-S.; Shiue, L.-R. Electrochemical capacitor of magnetitie in aqueous electrolytes. *J. Power Sources* **2003**, *113*, 173-178.

- 19. Wang, S.-Y.; Wu, N.-L. Operating characteristics of aqueous magnetite electrochemical capacitors. J. Appl. Electrochem. 2003, 33, 345-348.
- 20. Brousse, T; Bélanger, D. A hybrid Fe₃O₄-MnO₂ capacitor in mild aqueous electrolyte. *Electrochem. Solid-State Lett.* **2003**, *6*, A244-A248.
- Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Belanger, D. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. *Appl. Phys. A* 2006, *82*, 599-606.
- 22. Chung, K.W.; Kim, K.B.; Han, S.-H.; Lee, H. Novel synthesis and electrochemical characterization of nano-sized cellular Fe₃O₄ thin film. *Electrochem. Solid-State Lett.* **2005**, *8*, A259-A262.
- 23. Wang, S.-Y.; Ho, K.-C.; Kuo, S.-L.; Wu, N.-L. Investigation of capacitance mechanisms of Fe₃O₄ electrochemical capacitors. *J. Electrochem. Soc.* **2006**, *153*, A75-A80.
- 24. Pang, S. P.; Khoh, W. H.; Chin, S. F. Nanoparticulate magnetite thin films as electrode materials for the fabrication of electrochemical capacitors. *J. Mater. Sci.* **2010**, *45*, 5598-5604.
- 25. Chen, J.; Huang, K.; Liu, S. Hydrothermal preparation of octahedron Fe₃O₄ thin film for use in an electrochemical supercapacitor. *Electrochim. Acta* **2009**, *55*, 1-5.
- 26. Zhao, X.; Johnson, C.; Crossley, A.; Grant, P. S. Printable magnetite and pyrrole treated magnetite based electrode for supercapacitors. *J. Mater. Chem.* **2010**, *20*, 7637-7644.
- 27. Nagarajan, N.; Zhitomirsky, I. Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. *J. App. Electrochem.* **2006**, *36*, 1399-1405.
- Wu, M.-S.; Lee, R.-H.; Jow, J.-J.; Yang, W.-D.; Hsieh, C.-Y.; Weng, B.-J. Nanostructured iron oxide films prepared by electrochemical methods for electrochemical capacitors. *Electrochem. Solid-State Lett.* 2009, 12, A1-A4.
- 29. Wu, M.-S.; Lee, R.-H. Electrochemical growth of iron oxide thin films with nanorods and nanosheets for capacitors. *J. Electrochem. Soc.* **2009**, *156*, A737-A743.
- 30. Wang, D.; Wang, Q.; Wang, T. Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. *Nanotechnology* **2011**, *22*, 135604-135615.
- 31. Jin, W-H.; Cao, G-T.; Sun, J-Y. Hybrid supercapacitor based on MnO₂ and columned FeOOH using Li₂SO₄ electrolyte solution. *J. Power Sources* **2008**, 175, 686-691.
- 32. Santos-Pena, J.; Crosnier, O.; Brousse, T. Nanosized α-LiFeO₂ as electrochemical supercapacitor electrode in neutral sulfate electrolytes. *Electrochim. Acta* **2010**, 55, 7511-7515.
- Radhakrishnan, S.; Prakash, S.; Rao, C. R. K.; Vijayan, M. Organically soluble bifunctional polyaniline-magnetite composites for sensing and supercapacitor applications. *Electrochem. Solid State Lett.* 2009, 12, A84-A87.
- 34. Sassin, M. B.; Mansour, A. N.; Pettigrew, K. A.; Rolison, D. R.; Long, J. L. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. *ACS Nano* **2010**, 4, 4505–4514.