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Catalyst characterization procedures:  

X-ray diffraction (XRD) patterns of the as-fabricated BiVO4 catalysts were recorded on a 

Bruker/AXS D8 Advance X-ray diffractometer operated at 40 kV and 35 mA with a Cu K 

X-ray irradiation source ( = 0.15406 nm). Laser Raman spectra of the BiVO4 catalysts were 

measured on a Bruker RFS/100 Raman spectrometer equipped with a Nd:YAG laser (1064 

nm) and an InGaAs detector; the laser power was 100 mW. The powdered catalyst was placed 

in a sample holder, and the spectrum of each sample was recorded from 200 to 1000 cm
1

 

with a resolution of 4 cm
1

 in ambient atmosphere. Fourier transform infrared (FT-IR) spectra 

of the catalysts (1 wt% sample + 99 wt% KBr) were obtained in the 4004000 cm
1

 range 

with a resolution of 0.4 cm
1

 on a Bruker Vertex 70 spectrometer. Thermogravimetric 

analysis (TGA) and differential scanning calorimetric (DSC) analysis were conducted on a 

SDT Q600 (TA) apparatus in an air flow of 100 mL/min from room temperature to 700 
o
C 

(heating rate: 10 
o
C/min). Surface areas of the catalysts were determined via N2 adsorption at 

196 
o
C on a Micromeritics ASAP 2020 adsorption analyzer. Before measurement, each of 

the catalysts was degassed at 250 
o
C for 3 h. The surface areas were calculated using the 

Brunauer-Emmett-Teller (BET) method. The investigation by means of scanning electron 

microscope (SEM) was conducted on a Gemini Zeiss Supra 55 apparatus operated at 10 kV. 

Transmission electron microscopic (TEM) and high-resolution TEM images of the typical 

samples were obtained using a JEOL JEM-2010 instrument. The X-ray photoelectron 

spectroscopy (XPS) was used to determine the Bi 4f, V 2p, and O 1s binding energies (BEs) 

of surface bismuth, vanadium, and oxygen species, respectively, with Mg Kα (hν = 1253.6 eV) 

as the excitation source. Before XPS measurement, the catalyst was pretreated in an O2 flow 
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of 20 mL/min at 450 
o
C for 1 h. After being cooled to room temperature, the pretreated 

catalyst was transferred to a holder in a Glove Bag (Instruments for Research and Industry, 

USA) that was filled with helium, and then the holder was transferred into the spectrometer 

chamber under helium. Before being analyzed in the analysis chamber, the pretreated catalyst 

was degassed in the preparation chamber for 0.5 h. The C 1s signal at BE = 284.6 eV was 

taken as a reference for BE calibration. The ultraviolet-visible (UV-Vis) diffuse reflectance 

spectra of the catalysts in the range of 200–800 nm were measured on a Shimadzu UV-2450 

UV-Vis spectrophotometer using BaSO4 as standard.  
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Fig. S1. Laser Raman spectra of (a) BiVO4-AA-1, (b) BiVO4-AA-2, (c) BiVO4-CA-1, and (d) 

BiVO4-CA-2. 

 

 

Laser Raman results:  

Fig. S1 illustrates the laser Raman spectra of the four BiVO4 samples obtained under 

different conditions. It is observed that there are six Raman bands at 210, 327, 367, 633, 702, 

and 826 cm
1

 for each of the BiVO4 samples. The signals are Raman bands characteristic of 

monoclinic BiVO4.
13

 The Raman band at 210 cm
1

 is assignable to the rotation/translation 

modes of BiVO4; the ones at 327 and 367 cm
1

 are attributable to the asymmetric and 

symmetric deformation modes of the VO4
3

 tetrahedron, respectively; the one at 633 cm
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ascribable to the asymmetric stretching vibration of the VO bond; and the ones at 702 and 

826 cm
1

 are due to the stretching vibrations of two different types of VO bonds. The shifts 

of Raman bands at 633 and 702 cm
1

 (VO stretching vibration) suggest that the lower 

frequency of the Raman stretching bands is corresponding to a longer bond length. Such a 

suggestion was confirmed by the well-established functional relationship between the Raman 

stretching frequency and the metaloxygen bond length in the local structure.
4
 It is also seen 

from Figure S1 that discrepancy in Raman band intensity of these samples is insignificant, 

indicating that the BiVO4 samples are of similar crystallinity.  

 

References: 

1 J. Q. Yu and A. Kudo, Effects of structural variation on the photocatalytic performance of 

hydrothermally synthesized BiVO4, Adv. Funct. Mater., 2006, 16, 21632169. 
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polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to VO4
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bearing minerals: namibite, pottsite and schumacherite, J. Raman Spectrosc., 2006, 37, 
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Fig. S2. FT-IR spectra of (a) uncalcined BiVO4-AA-1, (b) calcined BiVO4-AA-1, (c) 

uncalcined BiVO4-CA-1, and (d) calcined BiVO4-CA-1. 

 

 

FT-IR RESULTS:  

Fig. S2 shows the FT-IR spectra of the BiVO4-AA-1 and BiVO4-CA-1 samples before and 

after calcination at 450 
o
C for 4 h. The absorption band below 750 cm

–1
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ν3 asymmetric stretching mode of VO4
3–

, the absorption band at 830 cm
–1

 is due to the ν1 

symmetric stretching vibration of VO4
3–

.
1
 There are three weak absorption bands at 3430, 

3563, and 1627 cm
1

, attributable to the bending and stretching vibrations of adsorbed water 

molecules
1
. The absorption bands at 2870, 2964, and 3010 cm

1
 are assignable to the 

symmetric and asymmetric stretching vibrations of the CH2 groups and the terminal CH3 

group of residual organic species (from organic compounds used in the synthesis). The 

absorption band at 1387 cm
−1

 is due to the residual NO3
−
 ions of the samples.

2
 The absorption 

bands at 1292, 1456, and 1741 cm
1

 are due to the symmetric and asymmetric stretching 

vibrations of COO

.
3–5

 The absorption band at 1645 cm
1

 is due to the stretching vibration of 

C=O bonds,
4
 the ones at 1097, 1157, and 1243 cm

1
 are due to the stretching vibrations of 

CO (ester bonds),
3,6

 and the ones at 755, 844, and 985 cm
1

 are due to the bending vibrations 

of CH bonds.
3
 According to the FT-IR spectra, one can realize that there was the presence of 

adsorbed H2O, EG, and ascorbic acid or citric acid as well as PMMA template on the 

uncalcined BiVO4 samples (Fig. S2a and c), but all of the organics were completely removed 

after these samples were calcined at 450 
o
C for 4 h (Figure S2b and d). Therefore, the FT-IR 

results clearly indicate that after the thermal treatments adopted in the present study, there was 

complete elimination of the organics from the BiVO4 samples.  
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Fig. S3. TGA/DSC profiles of (A) BiVO4-AA-1 and (B) BiVO4-CA-1 samples before 

calcination at 450 
o
C for 4 h. 
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below 186 
o
C (attributable to the removal of physically adsorbed methanol,

1
 water,

1
 and 

nitrate ions
2
) accompanying with two weak endothermic signals at 107 and 154 

o
C. A big 

weight loss (79.4 wt%) can be seen in the temperature range of 186408 
o
C, together with the 

appearance of a strong endothermic peak at 365
 o

C, which can be attributed to the oxidative 

elimination of the residual ascorbic acid
 3

 and EG and the PMMA template.
4
 There are no 

weight losses above 408 
o
C. For the uncalcined BiVO4-CA-1 sample (Fig. S3B), there are 

three weight losses (totally 15.3 wt%) below 177 
o
C, attributable to the removal of physically 

adsorbed methanol,
1
 water,

1
 and nitrate ions,

2
 accompanying with three weak endothermic 

signals at 50, 109 and 140 
o
C. There is a big weight loss (76.1 wt%) in the temperature range 

of 177409 
o
C, with the corresponding strong endothermic peak appearing at 367

 o
C; such a 

big weight loss can be ascribed to the oxidative removal of the residual citric acid
5
 and EG

4
 

and the PMMA template.
4
 Above 409 

o
C, there is no detection of weight losses. The above 

results indicate that calcining the BiVO4 precursors at 450 
o
C could guarantee the complete 

removal of organic solvent and PMMA template, as also substantiated by the results of FT-IR 

investigation.  
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Fig. S4. (A) Nitrogen adsorption-desorption isotherms and (B) pore size distributions of (a) BiVO4-AA-1, (b) BiVO4-AA-2, (c) BiVO4-CA-1, 

and (d) BiVO4-CA-2.  
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BET results:  

Shown in Fig. S4 are the N2 adsorption-desorption isotherms and pore size distributions of 

the four BiVO4 samples. It is observed from Fig. S4A that each of the BiVO4 samples shows a 

type III isotherm with a H3 hysteresis loop,
1
 implying the generation of slit-shaped pores in 

the aggregates of nano- or microparticles. The absence of an adsorption plateau at a p/p0 of ca. 

1.0 suggests the presence of macropores.
2,3

 Apparently, all of the BiVO4 samples have 

macropores, and the appearance of a quite narrow H1 hysteresis loop in the p/p0 range of 

0.1–0.8 implies the presence of nanovoids or nanopores,
1,3

 in good agreement with the SEM 

and TEM observations (Figs. 2 and 3). The BiVO4 samples display a narrow pore size 

distribution in the 210 nm range (Fig. S4B); furthermore, the dV/dD value decreases with an 

increase in pore size around 2 nm, suggesting that there might be the presence of micropores 

in the four BiVO4 samples. These micropores are mostly originated from the skeletons of the 

macropores of BiVO4. 
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Fig. S5. (A) Bi 4f, (B) V 2p3/2, and (C) O 1s XPS spectra of (a) BiVO4-AA-1, (b) BiVO4-AA-2, (c) BiVO4-CA-1, and (d) BiVO4-CA-2.  
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Fig. S6. The absorbance versus wavelength of sampled solutions over BiVO4-AA-1 

photocatalyst before and after reaction (0180 min) in the presence of 0.6 mL H2O2 for the 

degradation of phenol aqueous solution (C0 = 0.2 mmol/L) under visible-light ( 400 nm) 

illumination.  

 

0

0.1

0.2

0.3

200 250 300 350 400

Wavelength (nm)

A
b

so
rb

a
n

ce

─ 180 min

─ 150 min

─ 120 min

─  90 min

─  60 min

─  30 min

─   0 min

Reaction time

Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2012


