Supplementary Material

Three-dimensionorderedmacroporousbismuthvanadates:PMMA-templatingfabricationandexcellentvisible-light-drivenphotocatalytic performance for phenol degradation

Yuxi Liu,^a Hongxing Dai,^{*a} Jiguang Deng,^a Lei Zhang,^a and Chak Tong Au^{*b}

^a Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China

^b Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China

* Corresponding authors:

Prof. Hongxing Dai (H. X. Dai)

Phone: +86-10-6739-6118;

Fax: +86-10-6739-1983;

E-mail: <u>hxdai@bjut.edu.cn</u>

Prof. Chak Tong Au (C. T. Au) Phone: +852 3411 7067; Fax: +852 3411 7348; E-mail address: pctau@hkbu.edu.hk

Content

Item	Page
Catalyst characterization procedures	3
Fig. S1	5
Laser Raman results	5
Fig. S2	7
FT-IR results	7
Fig. S3	10
TGA/DSC results	10
Fig. S4	13
BET results	14
Fig. S5	15
Fig. S6	16

Catalyst characterization procedures:

X-ray diffraction (XRD) patterns of the as-fabricated BiVO₄ catalysts were recorded on a Bruker/AXS D8 Advance X-ray diffractometer operated at 40 kV and 35 mA with a Cu $K\alpha$ X-ray irradiation source ($\lambda = 0.15406$ nm). Laser Raman spectra of the BiVO₄ catalysts were measured on a Bruker RFS/100 Raman spectrometer equipped with a Nd:YAG laser (1064 nm) and an InGaAs detector; the laser power was 100 mW. The powdered catalyst was placed in a sample holder, and the spectrum of each sample was recorded from 200 to 1000 cm^{-1} with a resolution of 4 cm^{-1} in ambient atmosphere. Fourier transform infrared (FT-IR) spectra of the catalysts (1 wt% sample + 99 wt% KBr) were obtained in the 400-4000 cm⁻¹ range with a resolution of 0.4 cm⁻¹ on a Bruker Vertex 70 spectrometer. Thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC) analysis were conducted on a SDT Q600 (TA) apparatus in an air flow of 100 mL/min from room temperature to 700 °C (heating rate: 10 °C/min). Surface areas of the catalysts were determined via N₂ adsorption at -196 °C on a Micromeritics ASAP 2020 adsorption analyzer. Before measurement, each of the catalysts was degassed at 250 °C for 3 h. The surface areas were calculated using the Brunauer-Emmett-Teller (BET) method. The investigation by means of scanning electron microscope (SEM) was conducted on a Gemini Zeiss Supra 55 apparatus operated at 10 kV. Transmission electron microscopic (TEM) and high-resolution TEM images of the typical samples were obtained using a JEOL JEM-2010 instrument. The X-ray photoelectron spectroscopy (XPS) was used to determine the Bi 4f, V 2p, and O 1s binding energies (BEs) of surface bismuth, vanadium, and oxygen species, respectively, with Mg K α (hv = 1253.6 eV) as the excitation source. Before XPS measurement, the catalyst was pretreated in an O₂ flow

of 20 mL/min at 450 °C for 1 h. After being cooled to room temperature, the pretreated catalyst was transferred to a holder in a Glove Bag (Instruments for Research and Industry, USA) that was filled with helium, and then the holder was transferred into the spectrometer chamber under helium. Before being analyzed in the analysis chamber, the pretreated catalyst was degassed in the preparation chamber for 0.5 h. The C 1s signal at BE = 284.6 eV was taken as a reference for BE calibration. The ultraviolet-visible (UV-Vis) diffuse reflectance spectra of the catalysts in the range of 200–800 nm were measured on a Shimadzu UV-2450 UV-Vis spectrophotometer using BaSO₄ as standard.

Fig. S1. Laser Raman spectra of (a) BiVO₄-AA-1, (b) BiVO₄-AA-2, (c) BiVO₄-CA-1, and (d) BiVO₄-CA-2.

Laser Raman results:

Fig. S1 illustrates the laser Raman spectra of the four BiVO₄ samples obtained under different conditions. It is observed that there are six Raman bands at 210, 327, 367, 633, 702, and 826 cm⁻¹ for each of the BiVO₄ samples. The signals are Raman bands characteristic of monoclinic BiVO₄.¹⁻³ The Raman band at 210 cm⁻¹ is assignable to the rotation/translation modes of BiVO₄; the ones at 327 and 367 cm⁻¹ are attributable to the asymmetric and symmetric deformation modes of the VO₄³⁻ tetrahedron, respectively; the one at 633 cm⁻¹ is

ascribable to the asymmetric stretching vibration of the V–O bond; and the ones at 702 and 826 cm⁻¹ are due to the stretching vibrations of two different types of V–O bonds. The shifts of Raman bands at 633 and 702 cm⁻¹ (V–O stretching vibration) suggest that the lower frequency of the Raman stretching bands is corresponding to a longer bond length. Such a suggestion was confirmed by the well-established functional relationship between the Raman stretching frequency and the metal–oxygen bond length in the local structure.⁴ It is also seen from Figure S1 that discrepancy in Raman band intensity of these samples is insignificant, indicating that the BiVO₄ samples are of similar crystallinity.

References:

- 1 J. Q. Yu and A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO₄, *Adv. Funct. Mater.*, 2006, **16**, 2163–2169.
- 2 J. Q. Yu and A. Kudo, Hydrothermal synthesis and photocatalytic property of 2-dimensional bismuth molybdate nanoplates, *Chem. Lett.*, 2005, **34**, 850–851.
- R. L. Frost, D. A. Henry, M. L. Weier and W. Martens, Raman spectroscopy of three polymorphs of BiVO₄: clinobisvanite, dreyerite and pucherite, with comparisons to VO₄³⁻ bearing minerals: namibite, pottsite and schumacherite, *J. Raman Spectrosc.*, 2006, 37, 722–732.
- 4 M. Gotić, S. Musić, M. Ivanda, M. Šoufek, S. Popović, Synthesis and characterisation of bismuth(III) vanadate, *J. Mol. Struct.*, 2005, **744**, 535–540.

Fig. S2. FT-IR spectra of (a) uncalcined BiVO₄-AA-1, (b) calcined BiVO₄-AA-1, (c) uncalcined BiVO₄-CA-1, and (d) calcined BiVO₄-CA-1.

FT-IR RESULTS:

Fig. S2 shows the FT-IR spectra of the BiVO₄-AA-1 and BiVO₄-CA-1 samples before and after calcination at 450 $^{\circ}$ C for 4 h. The absorption band below 750 cm⁻¹ is characteristic of the

 v_3 asymmetric stretching mode of VO₄³⁻, the absorption band at 830 cm⁻¹ is due to the v_1 symmetric stretching vibration of VO_4^{3-1} . There are three weak absorption bands at 3430, 3563, and 1627 cm^{-1} , attributable to the bending and stretching vibrations of adsorbed water molecules¹. The absorption bands at 2870, 2964, and 3010 cm^{-1} are assignable to the symmetric and asymmetric stretching vibrations of the CH₂ groups and the terminal CH₃ group of residual organic species (from organic compounds used in the synthesis). The absorption band at 1387 cm⁻¹ is due to the residual NO₃⁻¹ ions of the samples.² The absorption bands at 1292, 1456, and 1741 cm^{-1} are due to the symmetric and asymmetric stretching vibrations of COO^{-3-5} The absorption band at 1645 cm⁻¹ is due to the stretching vibration of C=O bonds,⁴ the ones at 1097, 1157, and 1243 cm⁻¹ are due to the stretching vibrations of C–O (ester bonds),^{3,6} and the ones at 755, 844, and 985 cm⁻¹ are due to the bending vibrations of C-H bonds.³ According to the FT-IR spectra, one can realize that there was the presence of adsorbed H₂O, EG, and ascorbic acid or citric acid as well as PMMA template on the uncalcined BiVO₄ samples (Fig. S2a and c), but all of the organics were completely removed after these samples were calcined at 450 °C for 4 h (Figure S2b and d). Therefore, the FT-IR results clearly indicate that after the thermal treatments adopted in the present study, there was complete elimination of the organics from the BiVO₄ samples.

References:

 F. Q. Dong, Q. S. Wu, J. Ma and Y. J. Chen, Mild oxide-hydrothermal synthesis of different aspect ratios of monoclinic BiVO₄ nanorods tuned by temperature, *Phys. Status Solidi A*, 2009, **206**, 59–63.

- L. Ren, L. Jin, J.-B. Wang, F. Yang, M.-Q. Qiu and Y. Yu, Template-free synthesis of BiVO₄ nanostructures: I. Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light, *Nanotechnology*, 2009, 20, 115603.
- 3 R. Z. Zhang, H. X. Dai, Y. C. Du, L. Zhang, J. G. Deng, Y. S. Xia, Z. X. Zhao, X. Meng and Y. X. Liu, P123-PMMA dual-templating generation and unique physicochemical properties of three-dimensionally ordered macroporous iron oxides with nanovoids in the crystalline walls, *Inorg. Chem.*, 2011, **50**, 2534–2544.
- 4 Y. T. Wu and X. F. Wang, Preparation and characterization of single-phase alpha-Fe₂O₃ nano-powders by Pechini sol-gel method, *Mater. Lett.*, 2011, **65**, 2062–2065.
- 5 J. S. Li, X. T. Wei, Y. S. Lin and D. Su, Synthesis of ordered mesoporous silica membranes containing iron oxide nanocrystallites, *J. Membr. Sci.*, 2008, **312**, 186–192.
- 6 N. Moussaif, S. Irusta, C. Yague, M. Arruebo, J. G. Meier, C. Crespo, M. A. Jimenez and J. Santamaría, Mechanically reinforced biodegradable nanocomposites. A facile synthesis based on PEGylated silica nanoparticles, *Polymer*, 2010, **51**, 6132–6139.

Fig. S3. TGA/DSC profiles of (A) BiVO₄-AA-1 and (B) BiVO₄-CA-1 samples before

calcination at 450 °C for 4 h.

TGA/DSC results:

Fig. S3 illustrates the TGA/DSC profiles of the uncalcined BiVO₄-AA-1 and BiVO₄-CA-1 samples. From Fig. S3A, one can see that there are two weight losses (totally 10.4 wt%)

below 186 °C (attributable to the removal of physically adsorbed methanol,¹ water,¹ and nitrate ions²) accompanying with two weak endothermic signals at 107 and 154 °C. A big weight loss (79.4 wt%) can be seen in the temperature range of 186–408 °C, together with the appearance of a strong endothermic peak at 365 °C, which can be attributed to the oxidative elimination of the residual ascorbic acid³ and EG and the PMMA template.⁴ There are no weight losses above 408 °C. For the uncalcined BiVO₄-CA-1 sample (Fig. S3B), there are three weight losses (totally 15.3 wt%) below 177 °C, attributable to the removal of physically adsorbed methanol,¹ water,¹ and nitrate ions,² accompanying with three weak endothermic signals at 50, 109 and 140 °C. There is a big weight loss (76.1 wt%) in the temperature range of 177–409 °C, with the corresponding strong endothermic peak appearing at 367 °C; such a big weight loss can be ascribed to the oxidative removal of the residual citric acid⁵ and EG⁴ and the PMMA template.⁴ Above 409 °C, there is no detection of weight losses. The above results indicate that calcining the BiVO₄ precursors at 450 °C could guarantee the complete removal of organic solvent and PMMA template, as also substantiated by the results of FT-IR investigation.

References:

- H. N. Li, L. Zhang, H. X. Dai and H. He, Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria-zirconia solid solutions with crystalline mesoporous walls, *Inorg. Chem.*, 2009, 48, 4421-4434.
- 2. M. Keskar, T. V. Vittal Rao and S. K. Sali, Solid state reactions of UO₂, ThO₂ and

(U,Th)O₂ with ammonium nitrate, *Thermochim. Acta*, 2010, **510**, 68–74.

- M. Sadakane, T. Horiuchi, N. Kato, C. Takahashi and W. Ueda, Facile preparation of three-dimensionally ordered macroporous alumina, iron oxide, chromium oxide, manganese oxide, and their mixed-metal oxides with high porosity, *Chem. Mater.*, 2007, 19, 5779–5785.
- M. Sadakane, R. Kato, T. Murayama and W. Ueda, Preparation and formation mechanism of three-dimensionally ordered macroporous (3DOM) MgO, MgSO₄, CaCO₃, and SrCO₃, and photonicstop band properties of 3DOM CaCO₃, *J. Solid State Chem.*, 2011, **184**, 2299–2305.
- R. Hua, S. Q. Sun, Q. Zhou and Y. Q. Xu, Tow-dimensional correlation analysis of oxidation process of ascorbic acid at different temperatures by Fourier transform infrared spectroscopy, *Chin. J. Anal. Chem.*, 2003, **31**, 134–138.

Fig. S4. (A) Nitrogen adsorption-desorption isotherms and (B) pore size distributions of (a) BiVO₄-AA-1, (b) BiVO₄-AA-2, (c) BiVO₄-CA-1, and (d) BiVO₄-CA-2.

BET results:

Shown in Fig. S4 are the N₂ adsorption-desorption isotherms and pore size distributions of the four BiVO₄ samples. It is observed from Fig. S4A that each of the BiVO₄ samples shows a type III isotherm with a H3 hysteresis loop,¹ implying the generation of slit-shaped pores in the aggregates of nano- or microparticles. The absence of an adsorption plateau at a p/p_0 of *ca*. 1.0 suggests the presence of macropores.^{2,3} Apparently, all of the BiVO₄ samples have macropores, and the appearance of a quite narrow H1 hysteresis loop in the p/p_0 range of 0.1–0.8 implies the presence of nanovoids or nanopores,^{1,3} in good agreement with the SEM and TEM observations (Figs. 2 and 3). The BiVO₄ samples display a narrow pore size distribution in the 2–10 nm range (Fig. S4B); furthermore, the dV/dD value decreases with an increase in pore size around 2 nm, suggesting that there might be the presence of micropores in the four BiVO₄ samples. These micropores are mostly originated from the skeletons of the macropores of BiVO₄.

References:

- S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd. ed., Academic Press, London, UK, 1982.
- 2 W. C. Li, A. H. Lu, C. Weidenthaler and F. Schüth, Hard-templating pathway to create mesoporous magnesium oxide, *Chem. Mater.* 2004, **16**, 5676–5681.
- 3 L. Gou and C. J. Murphy, Controlling the size of Cu₂O nanocubes from 200 to 25 nm, J.
 Mater. Chem., 2004, 14, 735–738.

Fig. S5. (A) Bi 4f, (B) V 2p_{3/2}, and (C) O 1s XPS spectra of (a) BiVO₄-AA-1, (b) BiVO₄-AA-2, (c) BiVO₄-CA-1, and (d) BiVO₄-CA-2.

Fig. S6. The absorbance versus wavelength of sampled solutions over BiVO₄-AA-1 photocatalyst before and after reaction (0–180 min) in the presence of 0.6 mL H₂O₂ for the degradation of phenol aqueous solution ($C_0 = 0.2 \text{ mmol/L}$) under visible-light ($\geq 400 \text{ nm}$) illumination.