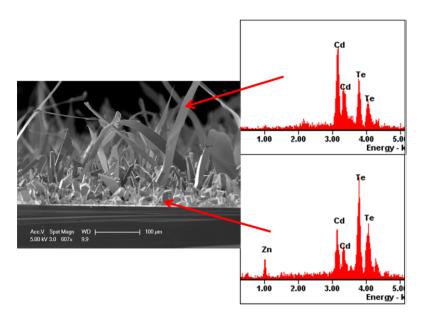

## **Supporting Information**

## Visible-NIR photodetectors based on CdTe nanoribbons


Xing Xie<sup>a,b</sup>, So-Ying Kwok<sup>a,b</sup>, Zhenzhen Lu<sup>a,b</sup>, Yankuan Liu<sup>a,b</sup>, Yulin Cao<sup>a,b</sup>, Linbao Luo<sup>a,b</sup>, J.A. Zapien <sup>a,b</sup>, Igor Bello<sup>a,b</sup>, Chun-Sing Lee<sup>a,b</sup>, Shuit-Tong Lee<sup>a,b</sup>, and Wenjun Zhang\*<sup>a,b</sup>

a Centre Of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China.

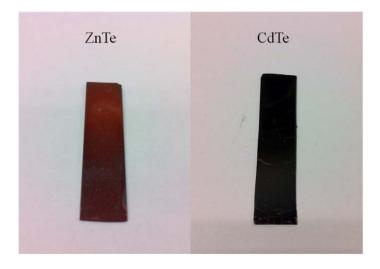
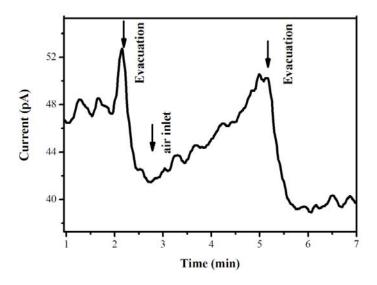
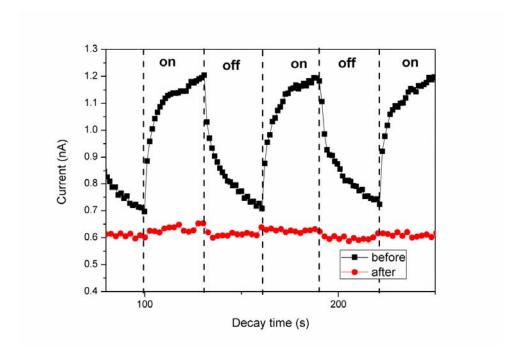
b Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China

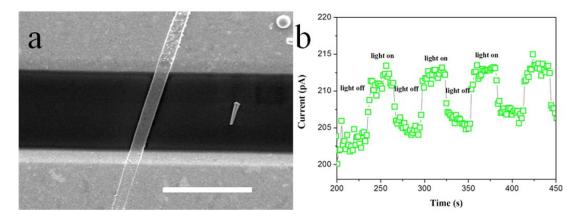


**Figure S1**. a) SEM morphology of ZnTe NRs. b) Enlarged SEM view of ZnTe NRs showing the thickness of NRs of about 120 nm. c) The EDS spectrum of ZnTe NRs.

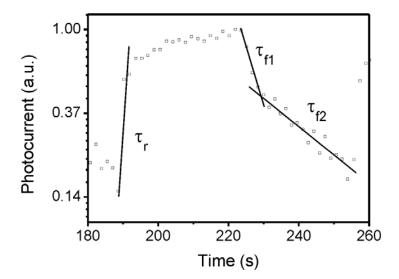


**Figure S2**. SEM images and EDS spectra of as-prepared CdTe NRs. Zn was observed in the buffer layer formed prior to the growth of ZnTe NRs on silicon substrates.



Figure S3. Optical images of ZnTe and CdTe NRs.




**Figure S4**. The variation of conductance of a single CdTe NR upon the switch of ambient between air and vacuum of  $2\times10^{-1}$  torr.



**Figure S5**. The photo response of the same CdTe NR device before and after 300 nm-thick  $SiO_2$  layer coating. The bias voltages is 10 V, the wavelength of incident light is 400 nm, and light intensity is 637  $\mu$ W/cm<sup>2</sup>.



**Figure S6**. a) SEM morphology of a CdTe NR-based photodetector with channel length of 10  $\mu$ m. The scale bar is 10  $\mu$ m. b) Photo response of the CdTe NR illuminated with 400 nm light with intensity of 5.8  $\mu$ W/cm<sup>2</sup>. The bias voltage is 10 V. The responsivity is calculated to be about 20.3 A/W.



**Figure S7**. Time response (LnI ~ t curve) of a single CdTe NR under bias voltage of 5V. The wavelength is 400 nm and light intensity is 637  $\mu$ W/cm<sup>2</sup>. The time response curve of the CdTe NR device can be well fitted by the equation  $I = I_0(1 - e^{-t/\tau_r})$  for the rising edge  $I = I_0e^{-t/\tau_f}$  for the falling edge.  $\tau_r$  and  $\tau_f$  are the time constants for the rising and rising edges, respectively. According to the fitting,  $\tau_r$  was estimated to be 1.1 s. For the falling edge, fitting gave two time constants:  $\tau_{f1} \sim 3.3$  s and  $\tau_{f2} \sim 17.1$  s.