Supplementary Information				
Enhanced dispersibility and cellular transmembrane capability of				
single-wall carbon nanotubes by polycyclic organic compounds as				
chaperon				
Lirong Wang ^b , Lihua Zhang ^a , Xue Xue ^a , Guanglu Ge ^b and Xingjie Liang ^a *				
^a Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials				
and Nanosafety, National Center for Nanoscience and Technology of China, Beijing,				
100190, China				
^b Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for				
Nanotechnology, National Center for Nanoscience and Technology of China, Beijing,				
100190, China				

- **Figure S1** SEM of Raw-SWCNTs and Purified-SWCNTs dispersed in ethanol on silicon
- 5 substrate. Insert: Photos of Raw-SWCNTs and Purified-SWCNTs solution.

Figure S2 UV-visible spectra of (A) 1/5 diluted supernatant solutions of 0.5 mg/mL SWCNTs (curve 1) and 0.5 mg/mL SWCNTs reacted with 500 μ M FITC (curve 2), and 500 μ M free FITC (curve 3). (B) 1/5 diluted supernatant solutions of 0.5 mg/mL SWCNTs (curve 1) and 0.5 mg/mL SWCNTs reacted with 500 μ M EB (curve 2), and 500 μ M free EB (curve 3). (C) 1/20 diluted supernatant solutions of 0.5 mg/mL SWCNTs (curve 1) and 0.5 mg/mL SWCNTs reacted with 500 μ M PBA (curve 2), and 500 μ M free PBA (curve 3). The data represented three separated experiments.

2 Figure S3 Gel electrophoresis of SWCNT-Rh123 with and without the existence of 100 mM

3 PBS. 1: 0.5 mg/ml SWCNTs reacted with 500 µM Rh123, 2: 0.5 mg/ml SWCNTs reacted with

- 4 500 μ M Rh123 in existence of 100 mM PBS.
- 5

Figure S4 AFM images of (A) SWCNTs binding with Rh123 (SWCNT-Rh123) conjugate and
(B) pristine SWCNTs coating with SDS (SWCNTs) in PBS-serum solution prepared on mica
modified with PDDA. Inset: Photos of SWCNT-Rh123 and SWCNTs in PBS-serum solution in
several weeks.

1

Figure S5 Flow cytometry (FACS) images of RTE cells treated with SDS, SWCNTs,
SWCNT-EB, and free EB, separately. RTE cells were incubated with 0.01 % SDS, 10 μg/ml
SWCNTs, SWCNT-EB and 10 μM EB, separately, for 24 hours with Alexa Fluor 488 annexin V / PI
Kit.

- 6
- 7

Figure S6 G-mode Raman intensity maps of single RTE cell after incubation with 10 μg/ml
SWCNT-EB for 24 hours (A) in 4 °C and (B) after pretreatment with NaN₃, merged with
microscope images of RTE cell. Other conditions are same in Figure 6.

Electronic Supplementary Material (ESI) for Nanoscale This journal is C The Royal Society of Chemistry 2012

- 1 Table S1 Flow cytometry (FACS) data of RTE cells treated with SDS, SWCNTs, SWCNT-EB,
- 2 and free EB, separately. RTE cells were incubated with 0.01 % SDS, 10 µg/ml SWCNTs,
- 3 SWCNT-EB and 10 µM EB, separately, for 24 hours with Alexa Fluor 488 annexin V / PI Kit.
- 4 Q1: fractional cells; Q2: dead cells; Q3: normal cells; Q4: apoptosis cells.

	Buffer-SDS	SWCNTs	SWCNT-EB	EB
Q1	0.01%	0.02%	0.01%	0.01%
Q2	0.02%	0.11%	0.18%	0.02%
Q3	98.78%	90.2%	89.97%	97%
Q4	1.19%	9.67%	9.84%	2.96%

5