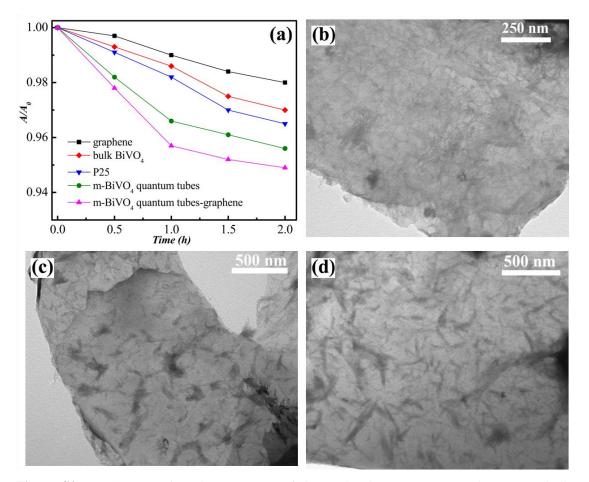

Highly Efficient Visible-Light-Driven Photocatalytic Activities in Synthetic Ordered Monoclinic BiVO₄ Quantum Tubes-Graphene Nanocomposites


Yongfu Sun,^{1,2} Bingyan Qu,¹ Qin Liu,² Shan Gao,¹ Zixian Yan,¹ Wensheng Yan,² Bicai Pan,¹ Shiqiang Wei^{*,2} and Yi Xie^{*,1}

1 Hefei National Laboratory for Physical Sciences at Microscale, University of Science & Technology of China, Hefei, 230026, P.R. China, Fax: 86 551 3606266; Tel: 86 551 3603987; E-mail: <u>yxie@ustc.edu.cn</u>

2 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China, Fax: 86 551 5141078; Tel: 86 551 3601997; E-mail: sqwei@ustc.edu.cn

Figure S2. (a) Concentration change curves of dye molecules over pure graphene, P25, bulk $BiVO_4$, monoclinic $BiVO_4$ quantum tubes and ordered monoclinic $BiVO_4$ quantum tubes-graphene nanocomposites under dark, taking the rhodamine B as an example; TEM images of ordered monoclinic $BiVO_4$ quantum tubes-graphene nanocomposites after visible-light photodegradation of (b) rhodamine B molecules, (c) methylene blue molecules and (d) methyl orange molecules.

Figure S2a shows the concentration change curves of dye molecules in the dark over pure graphene, P25, bulk BiVO₄, monoclinic BiVO₄ quantum tubes and ordered monoclinic BiVO₄ quantum tubes-graphene nanocomposites, taking the rhodamine B as an example. As displayed in Figure S2a, one can clearly see that there are no obvious differences in the adsorbance of rhodamine B among the above five materials, inferring that the process of adsorption equilibrium in dark do not have an apparent influence on the estimation of their photocatalytic properties. Figures S2b, c and d depict the TEM images of ordered monoclinic $BiVO_4$ quantum tubes-graphene nanocomposites after visible-light photodegradation of rhodamine B, methylene blue and methyl orange. Obviously, the morphologies of ordered monoclinic $BiVO_4$ quantum tubes-graphene nanocomposites in Figures S2b-d have no obvious variations after the measurement of photocatalytic properties, clearly revealing their excellent durability.