## **Electronic Supplementary Information**

## Selective determination of dopamine using quantum-sized gold nanoparticles protected with charge selective ligands

Kyuju Kwak, S. Senthil Kumar and Dongil Lee\*

Department of Chemistry, Yonsei University, Seoul 120-749, Korea

## **Contents**

| Fig. S1 | TEM image of the synthesized GS-Au <sub>25</sub>                                                      | s1  |
|---------|-------------------------------------------------------------------------------------------------------|-----|
| Fig. S2 | SWV of 1 mM GS-Au <sub>25</sub> in 0.1 M KCl                                                          | s1  |
| Fig. S3 | CVs demonstrating the effect of scan rate on the electrochemical behaviour of GS-Au <sub>25</sub> ME. | .s2 |
| Fig. S4 | CVs demonstrating the oxidation of DA and AA at bare GCE                                              | .s2 |
| Fig. S5 | CVs of GS-Au <sub>25</sub> ME in the absence and presence of 10 µM DA at different pH.                | .s3 |



**Fig. S1** TEM image of the synthesized GS-Au<sub>25</sub>. The inset shows the histogram illustrating the core size distribution.



Fig. S2 SWV of 1 mM GS-Au<sub>25</sub> dissolved in 0.1 M KCl at GCE working electrode.



**Fig. S3** (A) CVs of GS-Au<sub>25</sub>ME at varying scan rates (inner to outer voltammograms correspond to 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 mVs<sup>-1</sup> respectively). (B) Dependence of anodic and cathodic peak currents on the square root of scan rate.



Fig. S4 CVs demonstrating the oxidation of (A) DA and (B) AA at the bare GCE: curves a-e correspond to CVs in the presence of 0, 1, 5, 10, and 15  $\mu$ M of analyte, respectively.



Fig. S5 CVs of GS-Au<sub>25</sub>ME in the absence (A) and presence (B) of 10  $\mu$ M DA in 0.1 M KCl at different pHs (maintained using phthalate buffer). Curves a to d correspond to CVs recorded at pH 6, 5, 4 and 3, respectively, and \* represents the peak position.