Supporting Information

Assembly and Benign Step-by-Step Post-treatments of Oppositely Charged Reduced Graphene Oxides towards Transparent Conductive Thin Films of Multiple Potentials

Jiayi Zhu^{a,b} Junhui He^{a,*}

a Functional Nanomaterials Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Chinese Academy of Sciences, Zhongguancundonglu 29, Haidianqu, Beijing 100190, China

b Graduate University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author. Tel/Fax: +86 10 82543535. E-mail: jhhe@mail.ipc.ac.cn

Preparation of graphene oxide: Graphene oxide was synthesized from natural graphite by a modified Hummers method. 2 g graphite and 1 g sodium nitrate were mixed with 46 mL of concentrated sulfuric acid (98%) in a 500 mL flask. The mixture was stirred for 1 h in an ice bath. 6 g potassium permanganate was added to the suspension under vigorous stirring. The rate of addition was carefully controlled to keep the reaction temperature below 20 °C. After removal of ice bath, the mixture was stirred at 35 °C for 1 h. Then, 92 mL of deionized water was slowly added with vigorous agitation. The diluted suspension was stirred for 30 min. At the end, 20 mL of H₂O₂ (30%) and 280 mL of deionized water, and dried at 60°C to obtain GO powder.

Figure S1. Digital photographs of RGO-PDDA⁺ and RGO-O⁻ dispersions.

Figure S2. Raman spectra of GO, RGO-PDDA⁺, and RGO-O⁻.

Figure S3. TEM images of RGO-PDDA $^{+}$ (a) and RGO-O $^{-}$ (b).

Figure S4. Digital photographs of glass substrate (a), (RGO-PDDA⁺/RGO-O⁻)₁₀ (b), (RGO-PDDA⁺/RGO-O⁻)₂₀ (c) and (RGO-PDDA⁺/RGO-O⁻)₃₀ (d) films.

Figure S5. Simple static charge dissipation tests. (a) PET substrate (b) PET substrate coated with $(RGO-PDDA^+/RGO-O^-)_{30}$ film after the low-temperature step-by-step post-treatments.

Figure S6. Dependence of transmittance (550 nm) on step-by-step post-treatments for $(RGO-PDDA^+/RGO-O^-)_{10}$ (a), $(RGO-PDDA^+/RGO-O^-)_{20}$ (b) and $(RGO-PDDA^+/RGO-O^-)_{30}$ (c) films. Slight losses in film transmittance were observed after step-by-step post-treatments.

Electronic Supplementary Material (ESI) for Nanoscale This journal is The Royal Society of Chemistry 2012

References:

1. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339-1339.