Electronic Supplementary Information

High-Yield Synthesis of Millimeter-Long, Semiconducting Carbon Nitride Nanotubes with Intense Photoluminescence Emission and Reproducible Photoconductivity

Jun Gao,^{b,c} Yong Zhou^{a,b,c}*, Zhaosheng Li,^{a,b,d} Shicheng Yan,^{a,b,d} Nanyan Wang,^{b,c} and Zhigang Zou^{a,b, c,d}*

^a National Laboratory of Solid State Microstructures, Nanjing University, Nanjing

210093, P. R. China. E-mail: zhouyong1999@nju.edu.cn (Y.Zhou),

<u>zgzou@nju.edu.cn</u> (Z.G.Zou)

^b Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University,

Nanjing 210093, P. R. China.

^cSchool of Physics, Nanjing University, Nanjing 210093, P. R. China.

^d Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, P. R. China.

Figure S1 Ultraviolet visible spectra of (a) the tubular carbon nitride and (b) the bulky $g-C_3N_4$ synthesized by directly heating melamine at 520 °C for 2 h.

Figure S2 Photoluminescent (PL) spectra of (a) the tubular carbon nitride and (b) the bulky g-C₃N₄ synthesized by directly heating melamine at 520 $^{\circ}$ C for 2 h.

Figure S3 XRD patterns of (a) melamine, (b) the nanofiber, and (c) carbon nitride nanotube.

Figure S4 Photoluminescent (PL) spectra of (a) pure melamine and (b) the nanofiber.

Figure S5 FTIR adsorption spectra of (a) melamine, (b) the nanofibrous precipitation, (c) the tubular carbon nitride, and (d) the bulky $g-C_3N_4$ synthesized by directly heating melamine at 520 °C for 2 h.

Figure S6 TG-DSC measurement of the nanofiber in air.