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1) Experimental Conditions and Nanopore Fabrication 

 To fabricate nanopores we use the well established e-beam drilling technique1. The 

nanopore used in the two sets of experiments was fabricated using a Philips/FEI CM300 

TEM operated at 200 kV, further detail on nanopore fabrication can be found elsewhere2. 

After fabrication, the pore was stored in a degassed and filtered 1:1 ddH2O:EtOH solution 

until use3. The nanopore chip was then mounted in a PMMA microfluidic cell and the two 

reservoirs on each side of the pore were filled with 0.22 um filtered and degassed buffer 

containing 1 M KCl, 1 mM Tris/HCl pH 7.5, and 0.1 mM EDTA, we used silicon o-rings to 

create a good seal between the two chambers. The Ag/AgCl electrodes connected to the pre-

amplifier of the Axopatch were immersed in the two reservoirs and a bias voltage of 100 mV 

was applied. This part of the setup was mounted on a damping table (Thorlabs, NJ) and 

enclosed in a Faraday cage. Signals were filtered using a 4-pole lowpass Bessel filter at a cut-

off frequency of 10 kHz. Signals were sampled at 100 kHz using a National Instrument PXI-

4461 DAQ card. 

 

2) Power Spectral Densities 

 The current standard deviation is evaluated in the frequency domain by taking the 

square root of the Power Spectral Density (PSD) summed over the full bandwidth up to 50 

kHz. The values found in the frequency domain are in good agreement with the values found 

in the time domain, thus demonstrating a correct calibration of the PSD. Both PSD have been 

computed using Welch's averaged modified periodogram method applied to data without 

events. The total data length used for PSD estimation was 217965 samples while the data 

segments were 16384 samples long with 75% overlap, allowing a good convergence of 
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spectrum estimates. The FFT size was 4 * 16384 padded with zero, giving a frequency 

resolution f of about 1.5 Hz up to 50 kHz. 

 In Fig. 2 we see very clearly the slope of the low-pass Bessel filter effect, which is at -

60 dB/decade. In fact the Bessel filter is a 4-pole order filter, which is then -80 dB/decade 

slope. This demonstrates that the high frequency current noise spectrum increasing 

20 dB/decade is still present up to the maximum frequency analysis of 50 kHz. The measured 

slope being then -80 + 20 = -60 dB/decade. The PSD of our low noise and high noise 

measurements are comparable to the ones shown in Tabard-Cossa et al.4 without the PDMS 

layer whether cleaning with piranha has been made or not.  

 

3) Event detection using adaptive thresholds 

 

Figure SI-1. Event detection done with adaptive thresholds and comparison with 

classical thresholds (3 to 6 σ). 

The goal of the event detection step is to detect and roughly localize eventual 

translocation events in the measured current. The approach usually applied to detect a 

translocation event is to use a threshold. This is implemented by comparing the current 

sample value  to a threshold , where  and  are the mean value and 

standard deviation of the current, and  is a positive parameter set by the user. A 

translocation event is then simply detected at this sample if  is lower than . As shown 
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in the previous section the presence of a 1/f noise in the measured current signal can vary 

significantly. This type of noise contains strong low frequency components, which can 

drastically increase the false detection rate of the threshold method. 

 One way to overcome this problem is to calculate an adaptive threshold, which 

automatically adapts to the local quantity of very low frequency components. In the event 

detection method proposed here, this is realized by defining a local threshold  through 

local estimates of the mean  and standard deviation  of the current signal as 

follows: 

 ( 2 ) 

The local mean value  is estimated by applying a first-order low-pass recursive filter to 

the current  as defined in Eq.( 3 ). 

 ( 3 ) 

In this equation,  is the only parameter of this filter and should be smaller and closer to 1 in 

order to obtain a stable low-pass filter. The local standard deviation  is estimated by 

applying the same filter to  and by taking the square root of the filter's output as 

shown in Eq. ( 4 ). 

 

 

( 4 ) 

The next sample of the current  is then compared to the adaptive threshold  

defined in Eq. ( 2 ) in order to decide if a translocation event starts at this sample. Once the 

start of an event has been detected, its end is localized at the first next sample whose value 

returns above a second threshold . This threshold is defined as , 

but with a positive parameter  such that . 
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4) Minimal Impulse Length detected by the CUSUM algorithm 

 

Figure SI-2. Graph of minimal impulse length detected by the CUSUM algorithm 

versus the impulse amplitude at fixed CUSUM settings. 

 Fig. SI-2 shows the minimum number of samples of an impulse detected by the 

CUSUM as a function of its current blockage (artificial signals). We can see that the minimal 

length an impulse must have in order to be detected by the CUSUM depends highly on the 

amplitude of its current blockage. In the scope of this article, the CUSUM was fine-tuned so 

that the current blockage that is optimally detected is the one of a single folded λ DNA 

strand, i.e. setting δ = 0.2 nA. The graph above supports the theoretical conclusions about 

CUSUM performance drawn in the article. Current blockages smaller than δ must be quite 

long to be detected by the CUSUM. This curve can be used to find the threshold where we 

can begin to use the CUSUM algorithm to detect short impulsions. At an impulse amplitude 

of 0.2 nA, the minimum impulse length that can be detected by the CUSUM algorithm is 10 

samples.  
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The inlets of Fig. SI-2 show a fit done by the short-impulse workaround (left current trace) 

and a fit of an impulse detected by the CUSUM (right current trace). 

 

5) Performance of the software package 

 

Figure SI-3. Performance of the software package. This graph shows the linear behavior 

of the OpenNanopore software package up to 16 million samples. The total speed was 210 

kS/s (kilo samples per second) where 13% is taken by the filter, 18%  by the event detection 

and 69% by the plotting. The MATLAB version used for this work was R2011b, the 

processor was an Intel Core i7 with 4 cores, the memory was 4 GB and the operating system 

was Mac OS X version 10.7.3. 
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6) Noise influence on CUSUM algorithm performance 

Goal: 

The goal is to study the influence of noise on the performance of the fitting step done 

through the CUSUM algorithm.	

 

Methodology: 

The general methodology is to measure the performance of the fitting method by analyzing 

the results obtained on a synthetic signal with different noise quantities. This synthetic signal 

has the following model: 

i n   ievent n   in n , ( 5) 

where ievent n  is a piecewise constant signal modeling a typical event, and in n  is an 

additive centered white Gaussian noise with standard deviation . 

 

In our application, a typical event is multi-level, with a current drop between two 

consecutive levels of at least  = 0.2 nA, and a dwell time of about 50 ms per level. The event 

signal ievent n  is generated so as to verify these assumptions: 

‐ two-level event, 

‐ first level: dwell time of 50 ms, value of -0.2 nA, 

‐ second level: dwell time of 50 ms, value of -0.4 nA. 

Moreover, 50 ms of baseline (0 nA) is added on each side of this chosen event to finally 

form ievent n . 

The signal to noise ratio SNR compares the quantity of additive noise in n   with the 

importance of the event signal ievent n , and is defined as SNR 



. Fig. SI-4 a) and b) shows 

two noisy synthetic signals i n , one with a "high" SNR  4 (on the left) and one with a 
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"low" SNR 1 (on the right). The event signal ievent n  is represented in dashed line on the 

same figure. 

Fitting results: 

Once applied on the noisy signal i n , the output of the CUSUM algorithm is a fitted 

signal i fit n , which consists of a piecewise constant signal trying to estimate the event signal 

ievent n . Fig. 2 shows the results obtained by the CUSUM algorithm on noisy signals with the 

same SNR as in Fig. SI-4 a) and b), with the fitted signal i fit n  represented in red. 

	

Figure SI-4. Influence of noise on the performance of the fitting step done with the 

CUSUM algorithm. a) and b) Noisy synthetic signals with high and low SNR respectively. 

c) and d) Results of fit with high and low SNR respectively. 
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Performance criterion: 

 

The measure of the performance is done thanks to the error of fit E fit. This quantity is the 

square root of the normalized mean squared error between the desired event signal ievent n  

and the fitted signal i fit n : 

E fit 
ievent n   i fit n  2

n


ievent n  2

n


 ( 6 ) 

 

Clearly, this quantity can be interpreted as the normalized distance between the two 

previous signals ievent n  and i fit n . As an example, the value obtained for E fit in the high 

SNR case of Fig. SI-4 c) is 4%, and increases to 33% in the low SNR case .of Fig. SI-4 d).	

In order to obtain significant statistical results, 1000 loops are realized for each SNR, and 

the average value of these 1000 errors is calculated to finally obtain the average error of fit 

E fit. This quantity is the global criterion of fit used in the following, and is obviously close to 

0% in the case of a good fit, and close to 100% in the worst case. 

	

Results: 

Fig. SI-5 shows in logarithmic and linear scale the behavior of the global criterion of fit 

E fit in % with respect to SNR. The SNR ranges from 0.1 (lot of noise) to 100 (little noise).	
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Figure SI-5. a) and b) Average error of fit E fit as a function of SNR in logarithmic and 

linear scale respectively. 

 

The logarithmic scale curve clearly shows that if the noise quantity is very important (

SNR lower than 0.5), the fitting performance is bad and the average error of fit stays close to 

its maximum value of 100%. For lower noise quantities and higher SNR , the error 

progressively decreases as the SNR increases above 0.5, to finally reach the acceptable value 

of 10% error around SNR  2 and very small errors for higher SNR. The linear scale curve 

highlights the rapid performance improvement as the SNR linearly increases. 

 

Conclusion: 

As a conclusion, this statistical study shows that the proposed fitting method applied to a 

typical event reaches acceptable performance when the SNR  reaches 1, and that this 

performance becomes excellent for SNR higher than 2. 
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