Supplementary Information for

High Performance of Solid-State Flexible Asymmetric Supercapacitor Based on Graphene Films

Bong Gill Choi,^{*a*} Sung-Jin Chang,^{*a*} Hyun-Wook Kang,^{*b*} Chan Pil Park,^{*b*} Hae Jin Kim,^{*a,b*} Won Hi Hong,^{*c*} SangGap Lee,^{*a*} Yun Suk Huh^{*a*}

^aDivision of Material Science, Korea Basic Science Institute, Daejeon, 305-333, Republic of Korea. E-mail: yshuh@kbsi.re.kr, <u>sgl757@kbsi.re.kr</u> ^bGraduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, Republic of Korea ^cDepartment of Chem. & Biomolecular Eng. (BK 21), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea

Fig. S1 Photograph of IL-CMG and RuO₂/IL-CMG films.

Fig. S2 (a) and (b) AFM images of IL-CMG. (b) and (c) Size distributions of IL-CMG.

Based on AFM images, the size distribution was calculated to be 450.6 nm and 2.3 μ m for lateral and vertical dimensions of GO sheets and 138.4 nm and 474.3 nm for lateral and vertical dimensions of IL-CMG sheets. The significant decrease in lateral dimensions of IL-CMG sheets is attributed to the intrinsic character of Hummers method and excessive sonication treatment.

Fig. S3 XPS spectra of RuO₂/IL-CMG and IL-CMG films (Inset shows C 1s spectra of IL-CMG films.).

As shown in Fig. S3b, C 1s clearly shows the high level of oxidation state for GOs with the mainly separated three peaks at C–C (285.5 eV), C–O (287.4 eV), and C=O (288.4 eV). These peaks are in accordance with previous reports.¹ After functionalization with ILs and reduction reaction with hydrazine, most of C–O and C=O peaks were significantly weakened, indicating the reduction of oxygen containing groups. In addition, an additional peak assigned to C–N (285.7 eV) appeared due to the presence of N-atom containing IL molecules.² Although all of the oxygen containing groups were not reduced completely, dramatic reduction of the oxygen groups for IL-CMG compared to GOs implies the restoration of large domains of π -conjugated structure.² This partial removal of oxygen groups on functionalized CMGs was previously observed by other works.^{1,2}

Fig. S4 XRD patterns of RuO₂/IL-CMG and IL-CMG films.

The peak at 24° in the XRD spectrum of IL-CMG composite films was observed. This peak was ascribed to an interlayer spacing of 0.36 nm in the CMG sheet.³ The broad shoulder peak at around at 35° on RuO_2/IL -CMG film indicates the amorphous structure of RuO_2 .

Fig. S5 TGA curves of IL-CMG and $\mbox{RuO}_2/\mbox{IL-CMG}.$

Current density $(A g^{-1})$	0.5	1	2	5	10
Power density (kW kg ⁻¹)	0.23	0.49	1.81	3.17	5.07
Energy density $(W \cdot h kg^{-1})$	2.95	2.93	2.90	2.84	2.82

Table S1. Power density and energy density for the symmetric SC devices at different current densities (based on the total mass of the entire device).

References

[1] B. G. Choi, H. Park, T. J. Park, M. H. Yang, J. S. Kim, S.-Y. Jang, N. S. Heo, S. Y. Lee, J. Kong and W. H. Hong, *ACS Nano*, 2010, *4*, 2910.
[2] T. Y. Kim, H. Lee, J. Kim and K. S. Suh, *ACS Nano*, 2010, *4*, 1612.

[3] K. Zhang, L. L. Zhang, X. S. Zhao and J. Wu, Chem. Mater., 2010, 22, 1392.