Supporting Information

Surfactant Free RGO/Pd Nanocomposites As Highly Active Heterogeneous Catalyst for the Dehydrogenation of Ammonia Borane for Chemical Hydrogen Release

Pinxian Xi^{*a}, Fengjuan Chen^a, Guoqiang Xie^a, Cai Ma^a, Hongyan Liu^a, Changwei Shao^b, Jun Wang^b, Zhihong Xu^c, Ximing Xu^d and Zhengzhi Zeng^{*a}

^aKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Colleague of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

^bState Key Laboratory of Advanced Ceramic Fibers & Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha, 410073, P. R. China

^cColleague of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000, P. R. China

^dUniv Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC4413, 75013, Paris, France

Fax: 86 931 8912582, Tel: 86 931 8912589

E-mail: xipx@lzu.edu.cn and zengzhzh@lzu.edu. cn

Figure S1. (A, B) TEM image GO nanosheets. (C) High-resolution TEM iamge of GO. (D) (E) AFM images and cross-section analysis of GO, (F) XPS spectrum of graphene oxide (GO)

Figure S2. EDX of RGO/Pd hybrid nanocomposites.

Figure S3 XPS spectrum of Pd

Table S1. Hydrogen generation from aqueous ammonia borane catalyzed by RGO/Pd based catalysts.

Catalyst	Metal/AB ratio(mol/mol)	Maximum H2/AB ratio(mol/mol)	Time for reaction completion (min)	TOF mol $H_2 \cdot mol$ catalyst ⁻¹ · min ⁻¹	Ref.
$2wt\%Pd/\gamma-Al_2O_3$	0.018	3.0	120	1.4	[1]
Pd black	0.018	3.0	250	0.7	[1]
zeolite confined Pd nanocluster	0.015	3.0	50	4.0	[2]
PSSA-co-MA stabilized Pd	0.05	3.0	12	5.0	[3]
RGO/Pd	0.04	3.0	12.5	6.25	This study
Pd/C	0.018	3.0	250	2.0	[4]
$2wt\%Pd/\gamma-Al_2O_3$	0.018	3.0	120	1.6	[5]
Co NPs	0.04	3.0	1.7	0.12	[6]

References:

- [1] Q. Xu, M. Chandra, J. Alloy Compd. 2007, 446,729.
- [2] M. Rakap, S. Özkar. Int J Hydrogen Energy., 2010, 35, 1305.
- [3] Ö. Metin, S. Sahin, S. Özkar, Int. J. Hydrogen Energy. 2009, 34, 6304.
- [4] P. V. Ramachandran, P. D. Gagare, Inorg. Chem., 2007, 46, 7810.
- [5] Q. Xu, M.Chandra, J Power Source. 2006,163,364.
- [6]. S. B. Kalidindi, U. Sanyal and B. R. Jagirdar, Phys. Chem. Chem. Phys., 2008, 10, 5870.