Electronic Supplementary Information (ESI)

Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO₃ nanoplates

Deliang Chen,*^{*a,b*} Tao Li,^{*a*} Qianqian Chen,^{*a*} Jiabing Gao,^{*a*} Bingbing Fan,^{*a*} Jian Li,^{*a*} Xinjian Li,^{*b*} Rui Zhang,^{*a,c*} Jing Sun^{*d*} and Lian Gao^{*d*}

^a School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P

.R. China.

^b School of Physics and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China ^c Aeronautical Industry Management, University Centre, Zhengdong New District, Zhengzhou 450046, P. R.

China

^d The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Fax: +86-371+ 67781593; Tel: +86-371+67781046; E-mail: <u>dlchen@zzu.edu.cn</u> (D.L. Chen)

Table S1 A summary of the synthetic parameters and photodegradation rate constants of theAg/AgCl@WO3 photocatalysts and some other samples for the purposes of comparative investigation

Sample name	AgNO ₃ / mmol	WO ₃		R _{W/(W+Ag)}	Morphol	Photoredu	
		Mass /	Mole /	in mole (%)	ogy of WO ₃	/ min	" $k / m_{1}n^{-1}$
		mg	mmol	· ,	2		
AA50pW5	1	50	0.22	18	Plate-like	5	0.27(2)
AA100pW5	1	100	0.43	30	Plate-like	5	0.29(3)
AA200pW5	1	200	0.86	46	Plate-like	5	0.52(6)
AA400pW5	1	400	1.73	63	Plate-like	5	0.127(3)
AA200pW10	1	200	0.86	46	Plate-like	10	0.35(3)
AA200pW30	1	200	0.86	46	Plate-like	30	0.25(2)
AA200pW0	1	200	0.86	46	Plate-like	0	0.081(4)
AA200rW5	1	200	0.86	46	Rod-like	5	0.123(8)
AA200cW5	1	200	0.86	46	Particulat e	5	017(2)
WO ₃ nanoplates	0	/	/	100	Plate-like	/	~0
Commercial WO ₃ powders	0	/	/	100	Particulat e	/	~0
Ag/AgCl (AA5)	1	0	0	0	/	5	0.020(7)

^{*a*} $-dC/dt = kC \Rightarrow \ln(C/C0) = \ln(A/A_0) = -kt + \text{constant}$, where *C* and *A* are the concentration and absorbance of the RhB aq. solution with a visible-light irradiation ($\geq 420 \text{ nm}$) of *t* / min, respectively; *t* ranges 0~3 min for the RhB cases (30 mg of photocatalyst in 30 mL of 10 mg mL⁻¹ RhB aq. solutions).

1

Fig. S1 (a) The synthetic processes for the hierarchical Ag/AgCl@WO₃ photocatalysts with various WO₃ substrates; (b) a schematic of the synthesis of Ag/AgCl@plate-WO₃ photocatalysts.

Fig. S2 The XRD patterns of the Ag/AgCl@plate-WO₃ (AA200pW5) sample (a) before and (a) after the photodegrading RhB aq. solutions under visible light irradiation.

Fig. S3 A typical SEM image of the Ag/AgCl@plate-WO₃ (AA200pW5) sample after the photodegrading RhB aq. solutions under visible light irradiation.

Fig. S4 N_2 adsorption-desorption isotherms of (a) Ag/AgCl@plate-WO₃ (AA200pW5) and (b) Ag/AgCl@rod-WO₃ (AA200rW5) photocatalysts.

Fig. S5 XRD patterns of Ag/AgCl@plate-WO₃ samples with various photoreduction times (t): (a) t = 5 min,

(b) t = 10 min, (c) t = 30 min and (d) t = 80 min.

Fig. S6 Plots of $(\alpha h \nu)^{1/2}$ vs. $h\nu$ according to the UV-vis DR spectra of (a) WO₃ nanoplates, (b) AgCl, (c) Ag/AgCl (AA5), and (d) Ag/AgCl@plate-WO₃ (AA200pW5).