Supporting Information

Silver-Coated Magnetite/Carbon Core/Shell Microspheres as Substrate-Enhanced SERS Probes for Detection of Trace Persistent Organic Pollutants

Qiao An,^a Full Name^a and Jia Guo,^a Jun Hu,^b and Chang-Chun Wang^{a,}*

^a State Key Laboratory of Molecular Engineering of Polymers, and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.

^b Department of Chemistry and Integrated Biosciences, The University of Akron, Akron, OH 44325-3601, USA

Figure S1. TEM images of Fe_3O_4 @carbon composite microspheres synthesized with various amounts of hydrogen peroxide: (a) 1.5, (b) 2.0, (c) 2.5, and (d) 3.0 mL. All scale bars in TEM are 100 nm.

Figure S2. Separation behaviors of the two Fe_3O_4 @carbon composite microspheres to the applied magnetic field (the magnetic field strength of the magnet is 2000 G).

Figure S3. C 1s XPS spectrum of Fe₃O₄@cabon composite microspheres.