385 Submitted to Nanoscale

Alumoxane/Ferroxane Nanoparticles for the Removal of Viral Pathogens: The Importance of Surface Functionality to Nanoparticle Activity[†]

Samuel J. Maguire-Boyle,^{a,b} Michael V. Liga,^{a,c} Qilin Li,^{a,c}* and Andrew R. Barron^{a,c,d,*}

Electronic supplementary information (ESI)

Fig. S1. The viral adsorption assembly.

Fig. S2. TG/DTA analysis of L-cysteic acid terminated alumina coated silicon wafer.

Fig. S3. TEM of L-cysteic acid alumoxane.

Fig. S4. TG/DTA of L-cysteic acid ferroxane.

Fig. S5. SEM and associated EDS map of an individual alumoxane/ferroxane nanoparticle coated fiber (NPN-2x): (a) SEM image, (b) sulfur, (c) aluminum, and (d) composite of aluminum and sulfur.

Fig. S6. TEM of L-cysteic acid ferroxane.

Fig. S7. XPS of L-cysteic acid alumoxane/ferroxane composite membrane.

D:\shared data\SMB\EDS\Navy fabric\Prototype-2\400um\spectrum.spc

Fig. S8. EDX spectrum of L-cysteic acid alumoxane/ferroxane composite membrane (NPN).

Fig. S9. Log plot of cumulative number of viruses passing through the Nomex[®]-derived filters as a function of exposure time for MS2 bacterage adsorption studies: untreated Nomex[®] (\bullet), alumoxane-ferroxane (\bullet), alumoxane-ferroxane XXX (\bullet), and alumoxane-ferroxane XX heated to 160 °C for 2 hours (\bullet).

Fig. S10. Optical images of (a) Nomex[®] fabric and (b) L-cysteic acid alumoxane functionalized Nomex[®] fabric. Adapted from S. J. Maguire-Boyle and A. R. Barron, *J. Membrane Sci.*, 2011, **382**, 107-115.