Supporting Information

Interfacial growth behavior of SnO_2 nanorods on {11-20} and {10-10} facets of $\alpha\mbox{-}Fe_2O_3$

Yi-Qun Zhang, Ling-Dong Sun*, Wei Feng, Hao-Shuai Wu, Chun-Hua Yan*

Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Lab in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing, 100871, China.

Figure S1. (a) STEM image of the α -Fe₂O₃/SnO₂ composite; (b, c, d) element mapping results of the α -Fe₂O₃/SnO₂ composite.

Figure S2. TEM images of α -Fe₂O₃/SnO₂ composite obtained after (a) 2 h, (b) 4 h, (c) 6 h, and (d) 9 h.

Figure S3. SnO₂ nanorods with (a) [001] and (b) [101] direction at the side surfaces of α -Fe₂O₃ nanorings.

Figure S4. Crystal structure of (a) α -Fe₂O₃ and (b) SnO₂.

Figure S5. Oxygen diagram of (a) of α -Fe₂O₃ (11-20) plane and (b) SnO₂ (101) plane, (c) side view of (a), (e) side view of (b), (d) oxygen diagram at the interface (white dotted frame) of α -Fe₂O₃ (left) and SnO₂ (right).

Figure S6. Oxygen diagram of (a) of α -Fe₂O₃ (10-10) plane and (b) SnO₂ (001) plane, (c) side view of (a), (e) side view of (b), (d) oxygen diagram at the interface (white dotted frame) of α -Fe₂O₃ (left) and SnO₂ (right).