SUPPORTING INFORMATION Cell "Vision": Complementary Factor of Protein Corona in NanoToxicology

Morteza Mahmoudi^{1,2,3*}, Seyyed N. Saeedi-Eslami³, Mohammad A. Shokrgozar³, Kayhan Azadmanesh⁴, Maryam Hasanloo³, Hamid Kalhor⁵, Carmen Burtea⁶, Barbara Rothen-Rutishauser⁷, Sophie Laurent⁶, Sara Sheibani⁸, and Hojatollah Vali⁸

¹Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

²Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

³National Cell Bank, Pasteur Institute of Iran, Tehran, Iran.

⁴Virology Department, Pasteur Institute of Iran, Tehran, 1316943551 Iran.

⁵Molecular Medicine, Faculty of advanced technologies, Gorgan Medical school, Gorgan, Iran.

⁶Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory,

University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium.

⁷Adolphe Merkle Institute, Université de Fribourg, CH-1723, Switzerland

⁸Dept. of Earth & Planetary Sciences/Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada

Corresponding Author: *Web: www.biospion.com; e-mail: <u>Mahmoudi@biospion.com</u>; <u>Mahmoudi-</u> <u>m@TUMS.ac.ir</u> **Table S1:** Description of the cell lines used in MTT and XTT studies (DMEM: Dulbecco's modified Eagle's medium; Ham's: Nutrient Mixture F-10; FBS: fetal bovine serum; RPMI-1640 (Roswell Park Memorial Institute))

Cell Code	Cell Type	Culture Medium
BE(2)-C	Human neuroblastoma	1:1 (DMEM+Ham's F12)+FBS10%
A172	Human glioblastoma	DMEM+FBS10%
НСМ	Human cardiac myocytes	1:1 (DMEM+Ham's F12)+FBS10%
		supplemented with 5µg/ml Insulin & 50
		ng/ml bFGF
A549	Human lung adenocarcinoma	DMEM+FBS10%
Hep G2	Human hepatocellular carcinoma	RPMI 1640+FBS10%
A-431	Human epithelial carcinoma	DMEM+FBS10%
293T	Human Embryonic Kidney	RPMI 1640+FBS10%
SW480	Human colon adenocarcinoma	DMEM+FBS10%
HeLa	Human cervical adenocarcinoma	MEM+FBS10%
Capan-2	Human pancreas adenocarcinoma	RPMI+FBS10%
Panc-1	Human pancreatic carcinoma	DMEM+FBS10%
Jurkat	Human T cell lymphoblast-like	RPMI +FBS10%
L929	Mouse connective tissue	RPMI+FBS10%
	fibroblast	

Figure S1: TEM images of HeLa cells before (a) and after (b,c) treatment with SPIONs showing the formation of lysozoms filled by SPIONs inside the cells; TEM images of L929 cells before (d) and after (e) treatment with SPIONs showing the entrance of NPs inside the cells which caused the formation of gas vesicle; (f) light microscope (\times 400) of stained cells with crystal violet showing the formation of gas vesicles (see red arrows); Inset at the top left is the light microscope (\times 400) of the stained-control cells; (g) TEM images of control HepG2 cells and (h-j) various magnification of TEM images of SPIONs-treated cells confirming the

existence of SPIONs in whole intracellular environment with no traceable vesicles/lysozoms; (k) and (l) showing the safe entrance of SPIONs in mitochondria; the scale bars are 2 μ m (for a, d, e, and g), 500 nm (for b,c, and h), and 200 nm (for i-l)

Figure S2: TEM images of HepG2 cells after treatment with SPIONs showing the formation of colonies via (a) tight junction and (b) membrane junction process. TEM images display the (c) trapping of SPIONs inside the membrane junction and SPIONs uptake pathways via (d) vesicle, (e) and (f) diffusion pathways.

Figure S3: Example of the analyzed cell-life cycle assays

Table S2: Example of the obtained data from the analyzed cell-life cycle assays

I doit 54	• L'Aum			cu uutu 1		illul y Zeu v		yeie ubb	uys		
header	Mod	RMS	Freq.	Freq.	Freq.	G1	G2	G1 cv	G2 cv	Freq.	Freq.
	el	(FL3-	G1	S	G2	Mean	Mean	(FL3-	(FL3-	sub-G1	super-G2
	(FL3-	A)	(FL3-	(FL3-	(FL3-	(FL3-	(FL3-	A)	A)	(FL3-A)	(FL3-A)
	A)	,	A)	A)	A)	A)	A)				. ,
293	Wats	218.	31.33	46.95	12.66	1568	3136	8.21	8.21	12.11	-0.19
C FCS	on	15	000				0.00	0	0		0.10
202	Wate	270	17 12	51.01	10.51	1512	2024	0 1 2	0 1 2	10.46	1.02
293 T ECS	vvals	570.	17.15	51.91	10.51	1312	5024	0.12	0.12	19.40	1.02
	UII	09	04.07	40.05	40.07	4.400	0000	0.00	0.00	0.00	0.40
2931 C	vvats	119.	34.97	46.25	12.27	1469	2938	8.09	8.09	6.99	2.16
2nd.FCS	on	93									
293T T	Wats	224.	21.88	49.71	11.13	1341	2682	8.71	8.71	16.32	4.13
2nd.FCS	on	65									
A431	Wats	33.9	16.32	29.25	8.13	1568	3136	8.21	8.21	46.14	0.19
C.FCS	on	5									
A431	Wats	29.6	15.55	32.53	7.56	1568	3136	8.21	8.21	43.53	1.49
TECS	on	8									
A5/19	Wate	206	40.51	28.67	15/6	1/12	2824	8/8	8/8	1/ 16	3.1
	on	200.	40.01	20.07	13.40	1412	2024	0.40	0.40	14.10	5.1
0.F03	UII	33	05.40	00.04	44.40	4007	0054	0.00	0.00	00.04	0.04
A549	Wats	324.	35.43	28.81	11.13	1327	2654	9.33	9.33	23.91	2.21
T.FCS	on	31									
BE-2-C	Wats	240.	12.19	32.34	8.65	1568	3136	8.21	8.21	43.98	3.37
C.FCS	on	61									
BE-2-C	Wats	247.	13.69	34.36	9.16	1568	3136	8.21	8.21	41.26	3.32
T.FCS	on	21									
HCM	Wats	28.7	36.99	13.36	3 53	1022	2044	11 04	11 04	45.01	1.56
TECS	on	2	00.00	10.00	0.00		2011			10101	
HCM	Wate	10.8	20.43	16.00	2.02	1036	2072	10.31	10.31	/8 18	1 / 1
	vvals	10.0	29.45	10.99	2.02	1030	2072	10.51	10.51	40.10	1.41
0.603		4	00.00	40.0	47.00	000	4040	44.00	44.00	0.45	40.50
Hela	vvats	286.	26.23	40.9	17.63	809	1618	14.06	14.06	6.45	13.59
C.FCS	on	/1									
Hela	Wats	264.	25.75	41.26	22.23	773	1546	14.07	14.07	7.29	10.72
T.FCS	on	74									
Hep G2	Wats	511.	28.65	29.94	7.21	1547	3094	8.13	8.13	36.53	0.13
C.FCS	on	08									
Hep G2	Wats	244.	18.01	30.93	6.69	1504	3008	8.16	8.16	45.5	0.47
TECS	on	49									••••
1.020	Wate	257	17 79	26 57	5 / 7	1680	3166	6.97	7 11	20.79	0.34
	on	67	47.75	20.57	5.47	1003	5100	0.37	7.44	20.75	0.54
U.FU3	UII	07	04.00	00.00	7 70	4000	04.00	7.0	0.07	00.40	0.00
L929	vvats	407.	31.26	23.23	1.13	1639	3102	7.8	8.27	39.13	-0.29
I.FCS	on	68									
sw48	Wats	177.	41.91	29.08	19.82	1355	2710	9.14	9.14	11.14	3.65
T.FCS	on	72									
sw48	Wats	60.7	40.38	29.62	11.87	844	1688	13.36	13.36	16.62	7.35
c.FCS	on	7									
Mean	n/a	213.	28.27	33.13	10.54	1355.9	2692.5	9.34	9.39	27.23	2.99
		29				5					
Standar	n/a	135	10 54	10.28	5 17	292 95	567 04	213	2 09	15.66	3.67
d	Π/α	80	10.04	10.20	0.17	202.00	001.04	2.10	2.00	10.00	0.07
Dovictio		00									
Deviatio											
n											