Electronic Supplementary Information

A Facile Synthetic Approach for Copper Iron Sulfide Nanocrystals with Enhanced Thermoelectric Performance

Daxin Liang, Ruoshui Ma, Shihui Jiao, Guangsheng Pang* and Shouhua Feng

EXPERIMENTAL DETAILS

All chemicals are used with no further purification. Oleic acid (OA, 90.0%), n-Dodecanethiol (DT, \geq 98.0%), Iron (III) chloride anhydrous (\geq 97.0%) and Sodium diethyldithiocarbamate trihydrate (NaS₂CN(C₂H₅)₂, \geq 99.0%) were purchased from Sinopharm Chemical Reagent Co., Ltd; Copper (II) chloride (CuCl₂, \geq 99.0%), Toluene (\geq 99.5%), Acetone (\geq 99.5%) and Methanol (\geq 99.5%) were purchased from Beijing Chemical Works; bulk chalcopyrite was purchased from ALFA AESAR and ground with agate ball mill for measurements. All syntheses are performed under N₂ flow using a standard Schlenk Line.

0.085 g CuCl₂ and 0.081 g FeCl₃ are added into a mixture of 12 ml OA and 18 ml DT in a 100 ml round-bottom flask. Heat the flask at 140 °C with a magnetic stirring bar under N₂ until reactants are fully dissolved, followed by an injection of 6 ml 0.2 M NaS₂CN(C_2H_5)₂ in DT suspension. Quickly raise temperature to 180 °C and react for 15 min. To terminate the reaction, quench the reaction by immersing the flask in a cold water bath. The reaction is then washed with toluene/methanol pair for 2 times and toluene/acetone pair for 1 time to remove any impurity. For thermoelectric measurements, both the CuFeS₂ nanoparticles and bulk chalcopyrite samples are hot-pressed at 300 °C under the pressure of 500 MPa, and then polished with sand paper to proper shapes for each measurement.

Powder X-ray diffraction (XRD) patterns are recorded on a Rigaku Ultra IV X-ray diffractometer with graphite-filtered Cu K α radiation, at 40 kV and 30 mA over the range of 15-85 ° (2 θ) at a scanning rate of 2 °/min. Scanning electron microscope (SEM) images are observed by using JSM-6700F

electron microscope. Transmission electron microscope (TEM) images and high-resolution transmission electron microscopic (HRTEM) images are observed by using FEI TECNAI G2 S-Twin with a field emission gun operating at 200 kV. UV-vis spectra are obtained from Ultra IV X-ray diffractometer (Hitachi High-Technologies Corporation). Thermal conductivity is characterized based on the Netzsch LFA427 laser technique. Electrical conductivity and Seebeck coefficient are measured by a ZEM-3 apparatus (ULVAC-RIKO, Inc.). Hall effect is measured in Van der Pauw configuration by a Hall analyzer (Lakeshore 7707) at room temperature. EDX spectra are obtained by using JEOL JSM-6300 at 5kV.

Fig. S1 Three-dimensional illustration of unit cell for chalcopyrite CuFeS₂.

Fig. S2 Plot of $(a \cdot hv)^2$ versus photon energy. (a) $(a \cdot hv)^2$ -Eg spectrum of CuFeS₂ nanoparticles. Extrapolation of the linear region shows a band gap of 1.20 eV. (b) $(a \cdot hv)^2$ -Eg spectrum of bulk chalcopyrite powders. Extrapolation of the linear region shows a band gap of 0.59 eV.

Fig. S3 XRD patterns of samples synthesized with different reactant ratios, indicating that dodecanethiol and sodium diethyldithiocarbamate are both necessary for CuFeS₂ nanoparticles synthesis. (a) as-synthesized CuFeS₂ nanoparticles. (b) sample with no dodecanethiol added during synthesis, indicating a mixture of Cu₅FeS₄, CuFe₂S₃ and Cu₇S₄. (c) sample with no sodium diethyldithiocarbamate added during synthesis, indicating a mixture of Cu₅FeS₄, indicating a mixture of Cu₇S₄. FeS and S and some unclear component.

Fig. S4 EDX spectra of $CuFeS_2$ nanoparticles. (a-c) EDX spectra of the as-synthesized $CuFeS_2$ nanoparticles. (d-f) EDX spectra of $CuFeS_2$ nanoparticles after thermoelectric measurements.

Table S1. EDX analysis of CuFeS₂ nanoparticles before and after thermoelectric measurements. (a) EDX analysis of as-synthesized CuFeS₂ nanoparticles with a formula of CuFe_{0.99}S_{2.08}. (b) EDX analysis of CuFeS₂ nanoparticles after thermoelectric measurements with a formula of CuFe_{0.97}S_{1.89}.

Element	At% (a)	Cu : Fe : S (a)	At% (b)	Cu : Fe : S (b)
Cu	24.56	1	25.93	1
Fe	24.27	0.99	25.12	0.97
S	51.17	2.08	48.95	1.89
Total	100		100	

Table S2. Hall effect measurement of bulk chalcopyrite and CuFeS₂ nanoparticles, indicating a p-type conduction.

nm · cm)		(cm ⁻³)	$(\mathrm{cm}^2 \cdot \mathrm{V}^{-1} \cdot \mathrm{s}^{-1})$
0.06864	р	5.3931×10 ¹⁹	1.6907
1.215	р	1.5167×10 ¹⁸	0.70352
1	m · cm)).06864 1.215	m ·cm)).06864 p I.215 p	$m \cdot cm$) (cm ⁻³) 0.06864 p 5.3931×10^{19} 1.215 p 1.5167×10^{18}

Table S3. Comparison of measured transport data to literature values at 300 K.

	Electrical Conductivity	Thermal Conductivity
	$(\mathbf{S} \cdot \mathbf{m}^{\cdot 1})$	$(\mathbf{W} \cdot \mathbf{m}^{\cdot 1} \cdot \mathbf{K}^{\cdot 1})$
As-synthesized nanoparticles	87.4	0.284
Bulk CuFeS ₂	1302.8	5.087
S1		9
S2	700-1000 (natural samples)	
	25-90 (synthetic samples)	
S 3	2000	
S 4		7.992

References

- S1. V. Popov, S. Kizhaev and Y. Rud, *Physics of the Solid State*, 2011, 53, 71.
- S2. B. Donovan and G. Reichenbaum, *British Journal of Applied Physics*, 1958, **9**, 474.
- S3. L. V. Kradinova, A. M. Polubotko, V. V. Popov, V. D. Prochukhan, Y. V. Rud and V. E. Skoriukin, *Semiconductor Science and Technology*, 1993, **8**, 1616.
- S4. K.-i. Horai and G. Simmons, *Earth and Planetary Science Letters*, 1969, **6**, 359.