Supporting Information:

The anodized crystalline WO₃ nanoporous network with enhanced electrochromic properties

Jian Zhen Ou,^{*a} Sivacarendran Balendhran,^a Matthew R. Field,^b Dougal G. McCulloch,^b Ahmad Sabirin Zoolfakar,^a Rozina A. Rani,^a Serge Zhuiykov,^c Anthony P. O'Mullane^b and Kourosh Kalantar-zadeh^{a*}

^a School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, Australia.

Fax: +613 9925 2007; *Tel:* +613 9925 3254; *E-mail: j.ou@student.rmit.edu.au and kourosh.kalantar@rmit.edu.au*

^b School of Applied Sciences, RMIT University, Melbourne, VIC, Australia.

^c Materials Science and Engineering Division, CSIRO, Highett, VIC, Australia.

Fig S1. Anodization current transient of a ~1 μ m thick RF-sputtered W film anodized at 20 V in a 50 ml ethylene glycol electrolyte mixed with 0.5 g NH₄F and 2 %vol H₂O for 45 min. The insert is the optical image of this sample with a surface with gaps and crevices.

Fig S2. Top and cross-sectional SEM images of ~1 μ m thick RF-sputtered W films anodized at 10 V in 50 ml ethylene glycol electrolytes mixed with 0.5 g NH₄F and (a), (b) 0 and (c), (d) 4 %vol H₂O for 15 and 120 min, respectively.

Fig S3. Anodization current transient of a ~1 μ m thick RF-sputtered W film anodized at 10 V in a 50 ml ethylene glycol electrolyte mixed with 0.5 g NH₄F and 0 (green line) or 4 %vol H₂O (blue line) for 15 and 120 min, respectively. The inserts are the optical images of the corresponding samples.

Fig S4. Anodization current transient of RF-sputtered W films with the thicknesses of 0.15, 0.3, 0.5 and 1 μ m anodized at 10 V in a 50 ml ethylene glycol electrolyte mixed with 0.5 g NH₄F and 2 % vol H₂O. The anodization durations for the W films with the thicknesses of 0.15, 0.3, 0.5 and 1 μ m were ~10, ~20, ~40 and ~90 min, respectively.

Fig S5. Optical band gap estimation of a crystalline 3D WO₃ nanoporous network (Orthorhombic phase) and a RF-sputtered film (monoclinic phase).

Fig S6. (a) Cyclic voltammograms (CVs) performed between -0.25 and 1.5 V (*vs.* Ag/AgCl) with a scan rate of 100 mV s⁻¹ in 0.1 M H₂SO₄ for a WO₃ layer with the thickness of 0.2 µm for up to 2000 cycles; (b)-(d) The corresponding *in situ* transmittance changes at the wavelength of (b) 550, (c) 650 and (d) 750 nm after the specified CV cycles.

Fig S7. (a) Cyclic voltammograms (CVs) performed between -0.25 and 1.5 V (*vs.* Ag/AgCl) with a scan rate of 100 mV s⁻¹ in 0.1 M H₂SO₄ for a WO₃ layer with the thickness of 0.6 µm for up to 2000 cycles; (b)-(d) The corresponding *in situ* transmittance changes at the wavelength of (b) 550, (c) 650 and (d) 750 nm after the specified CV cycles.

Fig S8. (a) Cyclic voltammograms (CVs) performed between -0.25 and 1.5 V (*vs.* Ag/AgCl) with a scan rate of 100 mV s⁻¹ in 0.1 M H₂SO₄ for a WO₃ layer with the thickness of 1 µm for up to 2000 cycles; (b)-(d) The corresponding *in situ* transmittance changes at the wavelength of (b) 550, (c) 650 and (d) 750 nm after the specified CV cycles.

Fig S9. (a) Cyclic voltammograms (CVs) performed between -0.25 and 1.5 V (*vs.* Ag/AgCl) with a scan rate of 100 mV s⁻¹ in 0.1 M H₂SO₄ for a WO₃ layer with the thickness of 2 µm for up to 2000 cycles; (b)-(d) The corresponding *in situ* transmittance changes at the wavelength of (b) 550, (c) 650 and (d) 750 nm after the specified CV cycles.

Fig S10. Chronoamperometric (CA) measurements with voltage step from -0.25 V (40 s) to +1.5 V (40 s) for WO₃ layers with the thicknesses of 0.2, 0.6, 1 and 2 μ m.