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S1. SLIP DISPLACEMENT FIELDS OF BLG IN 100 × 100 NM SUPERCELL

(a) (b)

Figure S1: (a) and (b): Displacement fields of BLG along x-axis, u, and along y-axis, v, in 100 nm

× 100 nm supercell with one central atom pair fixed as A-A stacking.

(a) (b)

Figure S2: (a) and (b): Displacement fields of BLG along x-axis, u, and along y-axis, v, in 100 nm

× 100 nm supercell with hexagonal BLG nanopore.
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S2. ANALYTICAL EXPRESSION TO FIT BLG GSF (γ-SURFACE)

The γ-surface of given plane of materials is a 2D periodic function, so it can be represented

by a 2D Fourier series with the aid of reciprocal lattice vectors gn,

γ(r) =
∑
n

Cneign·r (1)

For graphene, we adopt the first three items to describe γ-surface:

γ(u, v) = C0+C1 [cos(2ψ) + 2 cos(ψ) cos(φ)]

+C2 [sin(2ψ)− 2 sin(ψ) cos(φ)]
(2)

where

ψ =
2πu

3A0

, φ =
2πv√
3A0

(3)

Here A0 is the bond length of graphene; u and v is the displacement along x-axis and y-

axis defined in Figure 1 (a) of main text, respectively. Using Equation (2), GSF profiles

along certain special directions are displayed in Figure S3, where γisf , γusf and γ1usf is intrin-

sic stacking fault energy, unstable stacking fault energy and second unstable fault energy,

respectively.
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Figure S3: GSF profile along 〈112〉 and 〈110〉 of bilayer graphene.

Then we find out the expressions of the coefficients (C0, C1 and C2). Because γ(0, 0) = 0,

so C0 = −3C1. For extreme-points of GSF curve along 〈112〉 (γisf , γusf and γ1usf ), the

corresponding ψ areψ0 = 2π
3
, ψ1 = 4π

3
, ψ2 = 2π − 2 arctan

(
C1

C2

)
when C1C2 > 0

ψ0 = 2 arctan
(
−C1

C2

)
, ψ1 = 2π

3
, ψ2 = 4π

3
when C1C2 < 0

(4)
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Inserting Equation (4) into (2) we get
γusf = − 4C1

3

C1
2+C2

2

γisf = 3
√
3

2
C2 − 4.5C1

γ1usf = −3
√
3

2
C2 − 4.5C1

when C1C2 > 0 (5)


γusf = − 4C1

3

C1
2+C2

2

γisf = −3
√
3

2
C2 − 4.5C1

γ1usf = 3
√
3

2
C2 − 4.5C1

when C1C2 < 0 (6)

We just use Equation (6), then the coefficients are

C1 =
1

3
γusf

[
1 +

(
1− γisf

γusf

) 1
3

+

(
1− γisf

γusf

) 2
3

]
(7)

C2 =
2
√

3

9
γisf −

√
3

3
γusf

[
1 +

(
1− γisf

γusf

) 1
3

+

(
1− γisf

γusf

) 2
3

]
(8)

Then we plot GSF of BLG obtained from atomic simulations along certain directions in

Figure S4, which shows that γisf ≈ 0. So C2 ≈ −
√

3C1 = −
√

3γusf for graphene. In addition,

if u and v are both small, along some direction ~l we have

∇~lγ =
8π2C1

3A0
2 s (9)

Here s is the displacement along direction ~l. We also have,

∇~lγ =
G⊥
h0
s (10)

which is exactly the Hook’s law. Here h0 represents the inter-layer distance and G⊥ is

effective shear modulus between two layers. From the above two equations we know

G⊥ =
8π2C1h0

3A0
2 (11)

Combing (2), (3),(7), (8) and (11) we can get the expression of γ-surface as

γ(u, v) =
3A0

2G⊥
2π2h0

[
cos2

(
2πu

3A0

− 2π

3

)
+ cos

(
2πv√
3A0

)
cos

(
2πu

3A0

− 2π

3

)
+

1

4

]
(12)

To fit GSF obtained from atomic simulations in Figure 3 (a) in main text, we set

G⊥ = 1.588meV/Å
3

= 254.1MPa (13)

Using this value, the results of Equation (12) is shown in Figure 3 (b) in main text for the

whole 2D GSF and Figure S4 for GSF along certain directions.
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Figure S4: GSF curves obtained from atomic simulations and Equation (12). (a) along v=0. (b)

along v=0.5Å.

4

Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2012



S3. ANALYTICAL SOLUTIONS OF CONTINUUM MODEL

If we perform Fourier transformation to both side of Equations (5) in the main text, we

have w
2U(w, s) + 1−ν

2
s2U(w, s) + 1+ν

2
swV (w, s) + k20U(w, s) = a

2π

s2V (w, s) + 1−ν
2
w2V (w, s) + 1+ν

2
swU(w, s) + k20V (w, s) = b

2π

(14)

Here (w, s) is the coordination in reciprocal space. Solving U and V from the above equa-

tions, we obtain 
U(w, s) =

a
2π

k20+
1−ν
2

(w2+s2)
− 1+ν

4π
aw2+bsw

(k20+
1−ν
2

(w2+s2))(w2+s2+k20)

V (w, s) =
b
2π

k20+
1−ν
2

(w2+s2)
− 1+ν

4π
asw+bs2

(k20+
1−ν
2

(w2+s2))(w2+s2+k20)

(15)

Using the polar coordination [w = ρ cos(φ), s = ρ sin(φ)] and [x = r cos(θ), y = r sin(θ)],

We can get

u(r, θ)

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−i(wx+sy)U(w, s)dwds

=
a

2π

∫ ∞
0

ρJ0(ρr)

k20 + 1−ν
2
ρ2

dρ− 1 + ν

8π2

∫ ∞
0

ρ3F (ρr, θ)(
k20 + 1−ν

2
ρ2
)

(k20 + ρ2)
dρ

(16)

Here we take the following relation of Bessel function into account[1]∫ 2π

0

e−iρr cos(φ−θ)dφ = 2πJ0(−ρr) = 2πJ0(ρr) (17)

and define

F (ρr, θ) =

∫ 2π

0

(acos2(φ) + b sin(φ) cos(φ))e−iρr cos(φ−θ)dφ

=πaJ0(ρr) + f1(θ)

∫ 2π

0

cos(2φ)e−iρr cos(φ)dφ+ g1(θ)

∫ 2π

0

sin(2φ)e−iρr cos(φ)dφ

(18)

where f1(θ) = a
2

cos(2θ) + b
2

sin(2θ)

g1(θ) = −a
2

sin(2θ) + b
2

sin(2θ)
(19)

In addition, we have[2] ∫ 2π

0

sin(2φ)e−iρr cos(φ)dφ = 0 (20)

5

Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2012



and ∫ 2π

0

cos(2φ)e−iρr cos(φ)dφ = 2π

[
J0(ρr)− 2

J1(ρr)

ρr

]
(21)

Substituting these into Equation (18), we get

F (ρr, θ) = 2π

[
T1(θ)J0(ρr)− 2f1(θ)

J1(ρr)

ρr

]
(22)

where

T1(θ) =
a

2
+ f1(θ) (23)

Using the equations of Bessel functions below[2],∫ ∞
0

ρJ0(ρr)

k20 + ρ2
dρ = K0(k0r) (24)

∫ ∞
0

ρJ0(ρ)

(k20 + ρ2)2
dρ =

K1(k0)

2k0
(25)∫ ∞

0

J1(ρ)

k20 + ρ2
dρ =

1

k20
− K1(k0)

k0
(26)

we finally get analytical expressions of displacement fields in polar coordination as the fol-

lowing u(r, θ) = au1(r, θ) + bu2(r, θ)

v(r, θ) = av1(r, θ) + bv2(r, θ)
(27)

Here u1/u2 and v1/v2 are the Green’s functions of the system due to the reduced external

force [a, b] to produce the displacement at the point of origin. Their detail forms are written

in Equation (7) and (8) of main text.

6

Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2012



S4. NUMERICAL SOLUTIONS OF CONTINUUM MODEL OF HEXAGONAL

BLG NANOPORE

(a) (b)

Figure S5: (a) and (b): Displacement fields of BLG along x-axis, u, and along y-axis, v, for

hexagonal BLE nanopore with diameter of 3 nm from numerical solutions of Equation 9 in main

text.

[1] G. Watson, A treatise on the theory of Bessel functions (University press, 1922).
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