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Supplementary Information

S1. SLIP DISPLACEMENT FIELDS OF BLG IN 100 x 100 NM SUPERCELL
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Figure S1: (a) and (b): Displacement fields of BLG along x-axis, u, and along y-axis, v, in 100 nm

x 100 nm supercell with one central atom pair fixed as A-A stacking.
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Figure S2: (a) and (b): Displacement fields of BLG along x-axis, u, and along y-axis, v, in 100 nm

x 100 nm supercell with hexagonal BLG nanopore.
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S2. ANALYTICAL EXPRESSION TO FIT BLG GSF (7-SURFACE)

The y-surface of given plane of materials is a 2D periodic function, so it can be represented

by a 2D Fourier series with the aid of reciprocal lattice vectors g,
Y(r) =) Cpeltnr (1)
For graphene, we adopt the first three ite;ls to describe y-surface:
V(u,v) = Co+Ci [cos(2th) + 2 cos(¢)) cos(¢)]
+C4 [sin(2¢)) — 2sin(¢)) cos(@)]

(2)

where

2mu 2mv
¢_3A0’¢_\/§A0 (3>

Here Ay is the bond length of graphene; u and v is the displacement along x-axis and y-
axis defined in Figure 1 (a) of main text, respectively. Using Equation (2), GSF profiles
along certain special directions are displayed in Figure S3, where 7isf, Yusr and fylllsf is intrin-

sic stacking fault energy, unstable stacking fault energy and second unstable fault energy,

respectively.
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Figure S3: GSF profile along (112) and (110) of bilayer graphene.

Then we find out the expressions of the coefficients (Cy, C; and Cy). Because v(0,0) = 0,
so Cy = —3C;. For extreme-points of GSF curve along (112) (7, Yust and vl ), the
corresponding v are

Yo = &, = T,y = 21 — 2arctan (%) when C1C; >0

(4)
1Py = 2 arctan (—g—;) U = %ﬁ,@bz = %” when 705 <0

2
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Inserting Equation (4) into (2) we get

(
4013

Tust = TG re?
< Yisf = %gog - 4501 when 0102 >0 (5)

\71115f = —%§CQ — 4501

(

_ o _4cy?
’YUSf - _012+022
Vist = _%502 —45C, when C;C;<0 (6)

(Vi = 292Cp — 450,
We just use Equation (6), then the coefficients are

1 2
o\ 3 .\ 3
1+ (1 . ’%sf) 4+ (1 B ,}/ISf) ] (7>
Yusf Yusf
1 2
2v3 3 AR isf ) °
Yusf “Yust
Then we plot GSF of BLG obtained from atomic simulations along certain directions in

9 3
Figure S4, which shows that s =~ 0. So Cy =~ —\/3C, = —\/gfyusf for graphene. In addition,

1
Cy = g%sf

if u and v are both small, along some direction [ 'we have
871'201

—_— 9
BAOQS ()

Vi =

Here s is the displacement along direction I. We also have,

ﬂs
o

which is exactly the Hook’s law. Here hy represents the inter-layer distance and G is

Vivy = (10)

effective shear modulus between two layers. From the above two equations we know
_ 8n%Cihyg

- 3A)°

Combing (2), (3),(7), (8) and (11) we can get the expression of y-surface as

3A°GL [ o (2mu 27 21V 2mu 27 1
= sro = il ekl I 12
v (u, v) o |:COS A 3 + cos J3A coS A 3 + 1 (12)

To fit GSF obtained from atomic simulations in Figure 3 (a) in main text, we set

G, (11)

G, = 1.588meV /A’ = 254.1MPa (13)

Using this value, the results of Equation (12) is shown in Figure 3 (b) in main text for the

whole 2D GSF and Figure S4 for GSF along certain directions.
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Figure S4: GSF curves obtained from atomic simulations and Equation (12). (a) along v=0. (b)
along v=0.5A.
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S3. ANALYTICAL SOLUTIONS OF CONTINUUM MODEL

If we perform Fourier transformation to both side of Equations (5) in the main text, we

have

wU(w, s) + 152U (w, s) + sV (w, s) + k§U (w, ) = 3% (14)

sV (w,s) + 1_T”w2V(w, s) + 1+”swU(w s) + kiV (w,s) = %
Here (w, s) is the coordination in reciprocal space. Solving U and V from the above equa-

tions, we obtain

ﬁ _ 1+4v aw?+bsw
Uw,5) = Grttumsan ~ “in (B G20t 1) (s 77 kD) (15)
b
_ %%  _ 14v asw+bs?
V(w,s) = Ll (w2rs?) | An (Rt SZ(w2+s?))(wi 1521 k2)

Using the polar coordination [w = pcos(¢), s = psin(¢)] and [z = rcos(#), y = rsin(d)],
We can get

/ / “iwe ks 7 (), s)dwds (16)
= pJo(pr) l+v p°F(pr,0)
2 k‘2 1-v 2d'0 872 2 1-v 2 2 2 dp
™ Jo 0P ™ Jo (ko+Tﬂ)(ko+P)

Here we take the following relation of Bessel function into account|1]

27
/ efipT‘COS((ﬁ*e)d(b — 27TJ0(_p7’) = 27TJO<pT) (17)
0
and define

F(pr,0) = /O2Tr(acos2(¢) + bsin(¢) cos(¢))e =g

2T o (18)
=maJo(pr) + f1(9)/ cos(2¢)e_iprcos(¢)d¢+gl(9)/ sin(2¢)e @) ¢
0 0
where
f1(0) = % cos(26) + & sin(26) (1)
91(6) = —%sin(26) + £ sin(26)
In addition, we have[2]
2
/ sin(2¢)e" @ dp = 0 (20)
0
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and ,
/ COS(2¢>€—iprcos(¢)d¢ — 9 |:J0(,07”) _ 2J1(p,r):| (21)
0 pr
Substituting these into Equation (18), we get
Ji(pr
F(pr,0) = 2n {Tl(Q)Jo(PT) - 25(0) 2 )} (22)
where
a
Ty (0) = 5 + f1(0) (23)
Using the equations of Bessel functions below[2],
> pJo(pr)
dp = Ky(k 24
/0 kg Iy p o(kor) (24)
> pdo(p) K1 (ko)
—dp = 25
/0 B+m2 T 2k (#)
> Ji(p) 1 Ki(ko)
dp = — — 26
IR (26)

we finally get analytical expressions of displacement fields in polar coordination as the fol-
lowing

w(r,0) = auy(r,0) + bus(r, 0
(r,0) 1(r,0) + bua(r, 0) @)
v(r,0) = avy(r, 0) + buy(r, 0)
Here u; /ug and vy /vy are the Green’s functions of the system due to the reduced external

force [a, b] to produce the displacement at the point of origin. Their detail forms are written

in Equation (7) and (8) of main text.
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S4. NUMERICAL SOLUTIONS OF CONTINUUM MODEL OF HEXAGONAL

BLG NANOPORE
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Figure S5: (a) and (b): Displacement fields of BLG along x-axis, u, and along y-axis, v, for

hexagonal BLE nanopore with diameter of 3 nm from numerical solutions of Equation 9 in main

text.
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