Supporting Information

Densely Aligned Rutile TiO₂ Nanorod Arrays with High Surface Area for 5 Efficient Dye-sensitized Solar Cells

Miaoqiang Lv, ^a Dajiang Zheng, ^a Meidan Ye, ^a Lan Sun, ^a Jing Xiao, ^a Wenxi Guo^a and Changjian Lin*^a ^a State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China. E-mail: <u>cjlin@xmu.edu.cn</u>; Fax: +86-592-2186657; Tel: +86-592-2189354 * Corresponding author. E-mail: cjlin@xmu.edu.cn

10

Scheme 1 Illustrations of formation process of the split rutile TiO₂ NRAs

15

Fig. S1 SEM images of TiO₂ nanorods grown in a solution of 1 ml TiCl₄, 30 ml DI water and 30 ml concentrated hydrochloric acid at 150 °C on (a, b) glass side of the FTO substrates, and (c, d) inner 5 surface of the Teflon-liner. The inset shows high-magnification images of TiO₂ nanorods grown on the glass side of FTO substrate.

Fig. S2 The photograph of N719 dye sensitized 1-D rutile TiO₂ NRAs on FTO substrates. The TiO₂ NRA films were prepared using 1 ml TiCl₄, 30 ml DI water and 30 ml concentrated hydrochloric acid 5 (36.0-38.0%) at 150 °C for 6 h, followed by etching treatment with different duration. (a) TiO₂ NRAs film without any etching treatment, (b) 1 h-etched TiO₂ NRAs, (c) 3 h-etched TiO₂ NRAs, (d) 5 h-etched TiO₂ NRAs, (e) 7 h-etched TiO₂ NRAs

Fig. S3 Diffused reflectance spectra of TiO₂ NRAs film without dye-loading. Film a (TiO₂ NRAs film on 5 FTO substrate without any etching treatment), Film b (1 h-etched TiO₂ NRAs film), Film c (3 h-etched TiO₂ NRAs film), Film d (5 h-etched TiO₂ NRAs film) and Film e (7 h-etched TiO₂ NRAs film). The films before dye adsorption are illuminated from the TiO₂ side with integrating sphere.

10

Fig. S4 FESEM images of the top and cross-sectional views of TiO₂ NRAs on FTO substrates using 1 ml TiCl₄, 30 ml DI water and 30 ml concentrated hydrochloric acid for 6 h at 120 °C (a, b), 150 °C (c, d) and 5 180 °C (e, f).

Fig. S4 shows the top and side views of FESEM images of TiO_2 NRAs fabricated by hydrothermal in a solution containing 1 ml TiCl₄, 30 ml DI water and 30 ml concentrated hydrochloric acid at different temperatures for 6 h. Obviously, highly oriented TiO₂ NRA films with thickness of approximate 1.5 μ m, 6.2 μ m and 7.5 μ m for 120 °C, 150 °C and 180 °C respectively were grown on FTO substrates. In

10 addition, The TiO_2 NRA film prepared at 180 °Cfor 6 h had poor adhesion to FTO substrate and was easily detached from FTO substrate.

Fig. S5 FESEM images of the top and cross-sectional views of TiO₂ NRAs prepared by hydrothermal method using 1 ml TiCl₄, 30 ml DI water and 30 ml concentrated hydrochloric acid at 150 °C for (a) 4 h, 5 (b) 6 h and (c) 8 h.The thickness of TiO₂ NRA films is 4.5 μm, 6.2 μm and 6.5 μm for 4 h, 6 h and 8 h, respectively.

Fig. S6 FESEM images of the cross-sectional views of TiO₂ NRAs prepared by hydrothermal method using 30 ml DI water and 30 ml concentrated hydrochloric acid for 6 h with different amounts of TiCl₄. 5 (a) 0.5 ml, (b) 1 ml, (c) 1.5 ml, (d) 2 ml.

As increasing Ti^{4+} concentration from 0.5 ml to 2ml and keeping hydrothermal temperature at 150 °Cfor 6 h, the as-prepared film thickness increased sharply from 3.25 µm to 10.3 µm. However, the 10.3-µm-thick film was automatically detached from FTO substrate immediately when the sample was dried in the air.

Fig. S7 FESEM images of the top views of TiO₂ NRAs prepared by hydrothermal using 1 ml TiCl₄, 30 ml DI water and 30 ml concentrated hydrochloric acid for 6 h (a) and 48 h (c). Image (b) is the top view 5 of 1-h-etched TiO₂ NRAs.