Supporting Information

Self-assembled Nanostructures of Optically Active Phthalocyanine Derivatives. Effect of Central Metal Ionic on the Morphology, Dimension, and Handedness

Ranran Sun,^a Liang Wang,^b Jing Tian,^a Xiaomei Zhang^{*a} and Jianzhuang Jiang^{*b}

Figure S1. Electronic absorption and Circular Dichroism (CD) Spectra. CD spectra of (S)-H₂Pc(β -OC₅H₁₁)₈ (**1**) in dilute chloroform solution (A); The electronic absorption spectrum of (S)-H₂Pc(β -OC₅H₁₁)₈ (**1**) in dilute chloroform solution (red line) and **1** nanostructures dispersed in methanol (blue line) (B); CD spectra of **1** nanostructures dispersed in methanol (C); CD spectra of (S)-ZnPc(β -OC₅H₁₁)₈ (**2**) in dilute chloroform solution (D); The electronic absorption spectrum of (S)-ZnPc(β -OC₅H₁₁)₈ (**2**) in dilute chloroform solution (D); The electronic absorption spectrum of (S)-ZnPc(β -OC₅H₁₁)₈ (**2**) in dilute chloroform solution (red line) and **2** nanostructures dispersed in methanol (blue line) (E); CD spectra of **2** nanostructures dispersed in methanol (F).

Figure S2. SEM images of self-assembled nanostructures fabricated from compounds **1-2**. Nanostructures fabricated from (S)-H₂Pc(β -OC₅H₁₁)₈ (1) observed by SEM (A); High-magnification SEM image fabricated from 1 showing right-handed fibrous nanostructure (B); Nanostructures fabricated from (S)-ZnPc(β -OC₅H₁₁)₈ (2) observed by SEM (C); High-magnification SEM image fabricated from 2 showing right-handed fibrous nanostructure. (D).

Figure S3. TEM images of self-assembled nanostructures fabricated from compounds **1-4**. Nanostructures fabricated from (*S*)-H₂Pc(β -OC₅H₁₁)₈ (**1**) observed by TEM (A); Nanostructures fabricated from (*S*)-ZnPc(β -OC₅H₁₁)₈ (**2**) observed by TEM (B); Nanostructures fabricated from (*S*)-CuPc(β -OC₅H₁₁)₈ (**3**) observed by TEM (C); Nanostructures fabricated from (*S*)-NiPc(β -OC₅H₁₁)₈ (**4**) observed by TEM (D).

Figure S4. XRD profiles of the aggregates fabricated from 1 and 2 (A-B).

Figure S5. X-ray photoelectron spectra for complex 2 (solid line) and aggregates of complex 2 (dotted dash line) deposited on silicon surface.

Figure S6. X-ray photoelectron spectra for complex 3 (solid line) and aggregates of complex 3 (dotted dash line) deposited on silicon surface.

Figure S7. X-ray photoelectron spectra for complex **4** (solid line) and aggregates of complex **4** (dotted dash line) deposited on silicon surface.

Figure S8. IR spectra of phthalocyanine 1 (A) and nanostructures fabricated from 1 (B) in the region of $400-4000 \text{ cm}^{-1}$ with 2 cm⁻¹ resolution.

Figure S9. IR spectra of phthalocyanine **2** (A) and nanostructures fabricated from **2** (B) in the region of 400-4000 cm⁻¹ with 2 cm⁻¹ resolution.

Figure S10. IR spectra of phthalocyanine **3** (A) and nanostructures fabricated from **3** (B) in the region of 400-4000 cm⁻¹ with 2 cm⁻¹ resolution.

Figure S11. IR spectra of phthalocyanine **4** (A) and nanostructures fabricated from **4** (B) in the region of 400-4000 cm⁻¹ with 2 cm⁻¹ resolution.

Compound	Yield (%)	$\mathbf{M}^{+}\left(m/z\right)^{[a,b]}$	Analysis (%) ^[a]		
			С	Н	Ν
$(S) - H_2 Pc(\beta - OC_5 H_{11})_8(1)$	33.9	1203.8 (1203.6)	71.90 (71.85)	8.17 (8.21)	9.33 (9.31)
$(S) - \operatorname{ZnPc}(\beta - \operatorname{OC}_5 \operatorname{H}_{11})_8(2)$	36.6	1266.2 (1266.9)	68.26 (68.25)	7.59 (7.64)	8.89 (8.84)
$(S) - CuPc(\beta - OC_5H_{11})_8 (3)$	39.2	1265.3 (1265.1)	68.28 (68.35)	7.68 (7.65)	8.81 (8.86)
$(S) - NiPc(\beta - OC_5H_{11})_8$ (4)	35.5	1259.7 (1260.3)	68.59 (68.62)	7.69 (7.68)	8.83 (8.89)

Table S1. Analytical and mass spectroscopic data for the phthalocyanine derivatives 1-4. [a]

[a] Calculated values given in parentheses.

[b] By MALDI-TOF mass spectrometry. The value corresponds to the most abundant isotopic peak of the molecular ion (M^+) .

Compound	Рс-а	Pc-β	Pc NH	Pc alkyl			
				OCH ₂ CH(CH ₃)C ₂ H ₅	OCH ₂ CH(CH ₃)CH ₂ CH ₃	OCH ₂ CH(CH ₃)CH ₂ CH ₃	OCH ₂ CH(CH ₃)CH ₂ CH ₃
$(S) - H_2 Pc(\beta - OC_5 H_{11})_8(1)$	8.92 (s, 8 H)	4.52-4.39 (t, 16 H)	-0.77 (s, 2 H)	2.23-2.17 (t, 8 H)	1.91-1.80 (t, 16 H)	1.30-1.22 (br, 24 H)	1.17-1.08 (br, 24 H)
(<i>S</i>) - ZnPc(β -OC ₅ H ₁₁) ₈ (2)	8.07 (s, 8 H)	4.31-4.25 (t, 16 H)		2.25 (t, 8 H)	1.96 (t, 16 H)	1.37-1.36 (br, 24 H)	1.23-1.21 (br, 24 H)
(S) - NiPc (β -OC ₅ H ₁₁) ₈ (4)	8.54 (s, 8 H)	4.44-4.32 (t, 16 H)		2.30-2.19 (t, 8 H)	1.97-1.83 (t, 16 H)	1.49-1.32 (br, 24 H)	1.27-1.15 (br, 24 H)
F 3 8 6 1/2 12 1/2	. 1 . 1	1 11 / 1 1	1 1.	1			

Table S2. 1H NMR spectroscopic data (δ) for the compound 1, 2 and 4 recorded in CDCl3. [a]

[a] Multiplicities: s = singlet, d, = doublet, br=broad, m = multiple Due to the presence of the unpaired electron and the paramagnetic nature of Cu²⁺, ¹H NMR data for complex **3** is inavailable.

Compound	in chloroform	in <i>methanol</i>	
$H_2Pc(\beta-OC_5H_{11})_8(1)$	294, 346, 424, 588, 622, 646, 681	294, 357, 476, 666	
ZnPc(β-OC ₅ H ₁₁) ₈ (2)	288, 350, 424, 597, 658	305, 360, 454, 639	
CuPc(β -OC ₅ H ₁₁) ₈ (3)	297, 337, 401, 603, 662	295, 335, 415, 615, 665	
NiPc $(\beta$ -OC ₅ H ₁₁) ₈ (4)	288, 310, 409, 589, 651	272, 328, 428, 605, 673	

 Table S3. Electronic absorption data for the compounds 1-4 in chloroform and their nanoaggregates dispersed in methanol.