Magnetic and Conductive Magnetite Nanowires by DNA-templating

Hasan D. A. Mohamed, Scott M. D. Watson, Benjamin R. Horrocks, Andrew Houlton* Chemical Nanoscience Laboratory, School of Chemistry, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU (UK)

Supporting Information

DNA	Wavenumber (cm ⁻¹)	Assignment ^a	DNA/Fe ₃ O ₄	Wavenumber (cm ⁻¹)	Assignment ^a
	-	-		562	Fe-O stretch
	960	C-C deoxyribose stretch		964	C-C deoxyribose stretch
	1033 ^b	C-O deoxyribose stretch		1006 ^b	C-C deoxyribose stretch
	1071	C-O deoxyribose stretch		1065	C-O deoxyribose stretch
	1097	PO ₂ ⁻ symmetric stretch		1081	PO ₂ ⁻ symmetric stretch
	1246	PO ₂ ⁻ asymmetric stretch		1212	PO ₂ ⁻ asymmetric stretch
	1368	C-N stretch of cytosine and guanine		1336	C-N stretch of cytosine and guanine
	1416	C-H, N-H deformation; C-N stretch		-	-
	1488	Ring vibration of cytosine/guanine		1472	Ring vibration of cytosine/guanine
	1529	In-plane vibration of guanine and cytosine		-	-
	1603 ^b	In-plane vibration of adenine		1581 ^b	In-plane vibration of adenine
	1653	C=O stretch of cytosine/thymine; In-plane vibration of thymine		1643	C=O stretch of cytosine/thymine; In-plane vibration of thymine
	1692	C=O stretch of guanine/thymine; N-H thymine		-	-
	2850–3750	C-H stretches; N-H stretches, O-H stretches	2	2850–3500	C-H stretches; O-H stretches; N-H stretches

Table S1. Assignment and comparison in FTIR spectra $(500-4000 \text{ cm}^{-1})$ of bare calf thymus DNA, and calf thymus DNA-templated with Fe₃O₄.

^a Assignments of DNA vibration bands reference to [1–7].

^bPeak appeared as a shoulder.

Fig. S1 High resolution XPS spectrum of O1s region of calf thymus DNA-templated Fe_3O_4 nanowires immobilised upon a Si/native SiO₂ substrate. Curve fitting of the region shows that at least two distinct peaks can be identified in the O1s envelope, arising from the SiO₂ substrate support (531.8eV) and the Fe₃O₄ nanowire material (529.6eV). The O1s signal arising from the SiO₂ dominates the spectrum due to the large amount of native SiO₂ at the substrate surface. The lower energy peak assigned to the Fe₃O₄ is in good agreement with previously reported values for this material.[8,9]

Fig. S2 Raman spectra of samples of DNA/Fe₃O₄ material prepared according to the experimental procedures detailed for in the main article for samples used in spectroscopic analysis (red spectra) and in scanning probe microscopy studies (blue spectrum). Both spectra show a band in the 665–680cm⁻¹, characteristic of the A_{1g} transition of iron oxide in the Fe₃O₄ phase. The broad nature of this band in

both spectra is a consequence of the small particle sizes of the Fe_3O_4 material produced. Note the spectra have been normalised and offset for clarity.

Fig. S3 TappingModeTM AFM height image showing DNA-templated Fe₃O₄ structures isolated from a DNA/Fe₃O₄ "powder" sample initially prepared for use in spectroscopic studies. Structures isolated from such powder samples typically showed the Fe₃O₄ coatings upon the DNA to be of high roughness.

Fig. S4 TappingModeTM AFM height images showing additional examples of λ -DNA-templated Fe₃O₄ nanowires.

Fig. S5 TappingModeTM AFM height images showing examples of partially formed λ -DNA-templated Fe₃O₄ nanowires, where the metal oxide growth has not reach maturity during the reaction period.

References

- [1] S. Alex and P. Dupuis, Inorganica Chimica Acta, 1989, 157, 271-281.
- [2] A.A. Ouameur and H.-A. Tajmir-Riahi, J. Biol. Chem., 2004, 279, 42041-42054.
- [3] H. Arakawat, R. Ahmad, M. Naoui and H.-A. Tajmir-Riahi, J. Biol. Chem., 2000, 275, 10150-10153.
- [4] G. I. Dovbeshko, N. Y. Gridina, E. B. Kruglova and O. P. Pashchuk, Talanta, 2000, 53, 233-246.
- [5] D. Sarkar and M. Mandal, J. Phys. Chem. C, 2012, 116, 3227-3234.
- [6] F. Guo, Q. Zhang, B. Zhang, H. Zhang and L. Zhang, Polymer, 2009, 50, 1887-1894.
- [7] Y. Sun, B. Wang, H. Wang, and J. Jiang, J. Colloid Interf. Sci., 2007, 308, 332-336.
- [8] Y. Tian, B. Yu, X. Li, K. Li, J. Mater. Chem., 2011, 21, 2476-2481.
- [9] T. Fujii, F. M. F. de Groot, G. A. Sawatzky, F. C. Voogt, T. Hibma, K. Okada, *Phys. Rev. B*, 1999, **59**, 3195-3202.