Electronic Support Information (ESI) Figures & Tables

Table S1: Abbreviations and main components of the test media and the numerically estimated ionic strengths. The data were numerically estimated using the USGS software PHREEQCi 2.18 using the database *minteq.v4* omitting the following components: amino acids, proteins, vitamins and glucose.

Medium abbreviation	Test system	Main components	Concentration [mM]	Ionic strength [mM]
Elendt	Daphnia magna	CaCl ₂	2.0	8.3
		NaHCO ₃	0.8	
		$MgSO_4$	0.5	
DMEM+FCS	OLN-93 cells	NaCl	109.5	167.8
		NaHCO ₃	44.6	
		KCl	5.4	
		CaCl ₂	1.8	
		NaH ₂ PO ₄	0.9	
		$MgSO_4$	0.8	
		proteins, amino acids,		
		glucose		
DSM	Arthrobacter globiformis	NaCl	28.6	28.6
		glucose, proteins		
AS	Activated sludge	Sodium acetate	52.1	207.9
		Na ₂ HPO ₄	49.0	
		KH_2PO_4	27.6	
		NaNO ₃	9.8	
		CaCl ₂	0.25	
		$MgSO_4$	0.09	
AchE	Enzyme inhibition for	Na ₂ HPO ₄	20.0	52.3
	acetylcholine esterase	NaHCO ₃	0.6	
GR	Enzyme inhibition for glutathione reductase	KH ₂ PO ₄ / K ₂ HPO ₄	100.0	205.9

Table S2a: Application scenario A: "Polyvinylpyrrolidone coated iron oxide (Fe₃O₄; magnetite) nanoparticles as contrast agent for magnetic resonance imaging (MRI)" (tested with the "precautionary matrix" [Höck et al. 2010]).

Scenarios	Precautionary need						
	Workers, general [WG]	Workers, worst case [WWC]	Consumers [C]	Environment [E]			
MRI: production, liquid [PL] <i>Life cycle stage</i> : production of the IONP <i>Medium</i> : IONP in suspension MRI: production, dry [PD]	Precautionary need for workers in general <i>Workers</i> : all persons getting potentially into contact with the IONP during production	Precautionary need for workers in the worst case <i>Workers</i> : all persons getting potentially into contact with the IONP during production	[Not applicable]	Precautionary need for the environment			
<i>Life cycle stage</i> : production of the IONP <i>Medium</i> : IONP as dry powder	Assumptions refer to normal production process	Assumptions refer to worst case					
MRI: use, liquid [UL] <i>Life cycle stage</i> : use of the IONP as contrast agent in clinical settings <i>Medium</i> : IONP in suspension	Precautionary need for workers in general <i>Workers</i> : all clinical personnel getting potentially into contact with	Precautionary need for workers in worst case <i>Workers</i> : all clinical personnel getting potentially into contact	Precautionary need for consumers <i>Consumers</i> : patients	Precautionary			
MRI: use, dry [UD] <i>Life cycle stage</i> : use of the PVP-IO-NP as contrast agent in clinical settings <i>Medium</i> : IONP in suspension	the IONP at the clinic Assumptions refer to normal handling of pharmaceuticals and medical products	with the IONP at the clinic Assumptions refer to worst case handling of pharmaceuticals and medical products	the IONP as contrast agent for MRI scanning purposes	environment			

Scenarios	Precautionary need						
	Workers, general [WG]	Workers, worst case [WWC]	Consumers [C]	Environment [E]			
Remediation: magnetite, liquid [ML]Particles: IONP (magnetite)Medium: IONP in suspensionRemediation: magnetite, dry [MD]Particles: IONP (magnetite)Medium: IONP as dry powder	Precautionary need for workers in general <i>Workers</i> : all persons getting potentially into contact with the IONP during production Assumptions refer to normal production process	Precautionary need for workers in the worst case <i>Workers</i> : all persons getting potentially into contact with the IONP during production Assumptions refer to worst case	Precautionary need for consumers <i>Consumers</i> : all persons getting potentially into contact with the IONP during use at remediation site	Precautionary need for the environment			
Remediation: nZVI, liquid [ZVL] Particles: nZVI Medium: nZVI in suspension Remediation: nZVI, dry [ZVD] Particles: nZVI Medium: nZVI as dry powder	Precautionary need for workers in general <i>Workers</i> : all persons getting potentially into contact with the nZVI during production Assumptions refer to normal production process	Precautionary need for workers in the worst case <i>Workers</i> : all persons getting potentially into contact with the nZVI during production Assumptions refer to worst case	Precautionary need for consumers <i>Consumers</i> : all persons getting potentially into contact with the nZVI during use at remediation site	Precautionary need for the environment			

Table S2b: Application scenario B: "Iron oxide (Fe₃O₄; magnetite) or zero valent iron (Fe⁰; nZVI) nanoparticles as adsorbent or reductive agent for soil or groundwater remediation purposes" (tested with the "precautionary matrix" [Höck et al. 2010]).

Table S3: Hydrodynamic diameter (Hd), pH and zetapotential (Zp) of the PVP-coated IONP stock solution and the used samples in medium. Stock: IONP [1 g Fe/L] in water Sample: IONP [100 mg Fe/L] in medium Blank: pure medium. See Table S1 for media abbreviations.

Medium	Day	Sample / Stock			Blank		
		Hd	pН	Zp	Hd	pН	Zp
H ₂ O Stock	0	26.5 ± 2.3	5.2	1.17 ± 2.06			
	1	23.4 ± 1.5	5.6	0.8 ± 0.97			
	3	25.7 ± 3.1	5.8	1.74 ± 0.83			
	6	23.6 ± 1.1	5.7	-2.25 ± 2.34			
H ₂ O Sample	0	22.9 ± 2.1	5.2	0.13 ± 0.36		5.6	$\textbf{-0.28} \pm 0.28$
	1	23.6 ± 3.1	5.1	2.3 ± 1.31		5.8	$\textbf{-0.68} \pm 0.3$
	3	26.7 ± 3.7	5.1	6.25 ± 4.64		5.6	$\textbf{-0.62} \pm 0.28$
	6	29.8 ± 4.8	5.0	3.2 ± 3.6		5.8	$\textbf{-0.03} \pm 0.14$
Elendt M7	0	46.6 ± 2	7.4	$\textbf{-0.96} \pm 1.13$		7.6	$\textbf{-0.16} \pm 0.18$
	1	82.3 ± 3.4	7.4	$\textbf{-1.01} \pm 0.84$		7.7	$\textbf{-0.59} \pm 1.07$
	3	132.5 ± 15.6	7.4	-1.41 ± 0.34		7.6	-0.35 ± 1.35
	6	232.7 ± 50.4	7.5	-1.2 ± 0.68		7.6	$\textbf{-0.88} \pm 0.75$
DMEM-FCS	0	28.5 ± 5.1	7.9	-5.42 ± 1.57	25.4 ± 4.3	7.8	-6.76 ± 1.44
	1	32.5 ± 3.2	8.2	-7.12 ± 0.98	29.3 ± 0.6	8.0	-7.89 ± 1.09
	3	33.8 ± 1.5	8.2	-7.99 ± 0.52	26.6 ± 7.5	8.0	-7.05 ± 1.67
	6	36.5 ± 1.9	8.2	-7.2 ± 0.97	35.1 ± 7.9	8.1	-7.8 ± 0.59
AchE	0	21.5 ± 2.7	8.0	-0.36 ± 0.3		8.0	$\textbf{-0.33} \pm 0.41$
	1	23.7 ± 2.2	8.0	$\textbf{-0.49} \pm 0.42$		8.0	0.07 ± 0.92
GR	0	23.5 ± 2.8	7.6	0.18 ± 0.55		7.6	$\textbf{-0.75} \pm 1.84$
	1	26.6 ± 3.7	7.6	$\textbf{-0.14} \pm 1.71$		7.6	-2.68 ± 2.15
AS	0	28.3 ± 1.2	7.6	$\textbf{-0.92} \pm 0.39$		7.6	-1.39 ± 1.24
	1	36.5 ± 2.4	7.7	3.69 ± 1.36		7.6	-1.46 ± 2.6
DSM	0	27.2 ± 1.4	6.9	-1.36 ± 1.77		6.9	0 ± 0.74
	1	26.3 ± 1.6	6.9	-0.77 ± 0.81		6.9	$\textbf{-0.53} \pm 0.71$

Table S4: List of physical constants for DLVO theory calculations (according to Lide et al. 1997.)

Name	Symbol	Value	Unit
Boltzmann constant	k_B	$1.38066 \cdot 10^{-23}$	J/K
Elementary charge	e_0	$1.60218 \cdot 10^{-19}$	As
Avogadro number	N_A	$6.02214 \cdot 10^{23}$	1/mol
Permittivity of the vacuum	\mathcal{E}_0	8.85419 · 10 ⁻¹²	F/m
Permeability of free space	μ_0	$1.25664 \cdot 10^{-6}$	N/A ²

Table S5: List of parameters for DLVO theory calculations

Name	Symbol	Value	Unit	Source
Temperature	Т	298.15	К	Temperature during dynamic light scattering (DLS) measurements
Radius of the particles	r	various	m	
Separation distance between particles (surface to surface)	h	various	m	
Separation distance between particles (centre to centre)	S	various	m	
Relative dielectric constant	\mathcal{E}_r	78.36		Water, 298.15 K (Lide et al. 1997)
Surface potential	ζ	various	v	According to Table S6
Inverse Debye length	к	various	1/m	
Ionic strength of the solution	Ι	various	mol/m ³	According to Table S6
Hamaker constant for $Fe_3O_4/$ H ₂ O / Fe ₃ O ₄	A	33	zJ (1 $zJ = 10^{-21} J$)	(Fauré 2011)
Saturation magnetization (volume)	M_s	various	$emu/cm^3 = 10^3 A/m$	
Thickness of polymer layer	L	various	m	
Segment length of PVP	l	0.269	nm	estimated by Hyperchem 7.5
Surface density of adsorbed chains	σ_{p}	1	nm ⁻²	(Lim et al. 2009), estimated
Number of segments in polymer chains	N_p	43	-	See ESI text

Electronic Supplementary Material (ESI) for Nanoscale This journal is The Royal Society of Chemistry 2013

Density of Fe ₃ O ₄	ρ	5.17	g/cm ³	at 298.15 K (Lide et al.
				1997)
Density of PVP	ρ	1.23	g/cm ³	MSDS (ScienceLab.com)
Saturation magnetization of	M_s	92	$emu/g = Am^2/kg$	at 300 K Utech et al.
Fe ₃ O ₄ (bulk) (mass)				(2010)
Thickness of non magnetic	l_m	1.0	nm	Kim et al. (2009)
oxide layer				

Table S6: Experimental database for extended DLVO theory calculations. The data were compiled from Tables S1 and S3. The calculations were done for primary particles (data of IONP in water: $d_H = 23$ nm, r = 7.5 nm, L = 4 nm). Influence of media on possibly further agglomeration was considered due to different zeta potential and ionic strength in media.

Medium	Zeta potential	Ionic
	[mV]	strength/
		[mol/ m ³]
Water	0.1	10^{-4}
Elendt M7	-1.0	8.3
DMEM	-5.4	167.8
AchE	-0.4	28.6
GR	0.2	207.9
AS	-0.9	52.3
DSM	-1.4	205.9

Figure S1: Electrostatic repulsion U_{elec} of PVP-coated IONP in the test media as a function of the surface to surface distance *h* between the magnetite cores. Differences in U_{elec} resulting from the changes in ionic strength of the media and the zeta potential change are minute compared to the other interactions U_{vdW} , U_{steric} and U_{magn} (see also Figure 5 and data in Table S6).

Figure S2: Fitted bacterial growth curves shown as the cumulative pressure development over the incubation time of the sewage sludge samples in days. Each data point represents the mean ± SD of three independent replicates. Open squares: PVP-FeNP treated samples, asterisks: untreated controls. The sewage sludge samples were incubated with three different PVP-coated IONP concentrations: a.) 1.5 mg Fe/mg TS, b.) 0.16 mg Fe/mg TS and c.) 0.01 mg Fe/mg TS.